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Abstract- The ever-growing demands of deep learning models necessitate the exploration of efficient training data 
generation techniques. Abstract image synthesis offers a compelling solution, enabling the creation of vast amounts of 
training data while meticulously controlling the production process to guarantee optimal distribution and content 
diversity. This approach holds immense potential for significantly enhancing the training pipeline within the field of 
machine learning. Over the past decade, a plethora of methodologies for generating training data have emerged. 
However, with the prospect of further advancements in this domain, a comprehensive survey and classification of these 
techniques is crucial. This paper provides an extensive inventory of the current image synthesis techniques employed in 
the context of visual machine learning. 

We propose a taxonomy for classifying these techniques based on their underlying modelling and rendering approaches 
specific to image generation. Additionally, we categorize them based on the computer vision applications they are most 
suited for. This classification scheme aims to foster the development of future image generation methods specifically 
tailored for machine learning applications. Focusing on the computer graphics aspects of these techniques, we delve 
deeper into their inner workings to encourage further exploration and refinement. Finally, we evaluate each technique 
based on reported performance and the quality of the generated images. This evaluation serves as an indicator of their 
projected learning potential for machine learning tasks. 

By encompassing both the application and data development aspects, this paper serves as a comprehensive reference for 
researchers working in the field of machine learning and related disciplines. 
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I. INTRODUCTION 

Deep learning (DL) is revolutionizing numerous fields, from computer vision to natural language processing. 
However, its effectiveness hinges on vast amounts of high-quality training data, a resource often scarce and 
expensive to annotate. This scarcity creates a bottleneck, limiting model performance regardless of computational 
power. 

Traditional data augmentation techniques, while valuable, are limited by the underlying real data. Synthetic data 
generation emerges as a promising solution. Unlike augmentation, it creates entirely new data, offering exciting 
possibilities for manipulating its composition to address specific challenges. 

This paper focuses on the intersection of deep learning and synthetic image generation for visual machine 
learning tasks (object detection, scene understanding, etc.). We delve into the computer graphics aspects of image 
synthesis, examining techniques that generate complete training datasets, excluding methods solely for 
augmentation or testing. 

To organize and analyze existing work, we propose a taxonomy based on scene modeling, rendering techniques, 
and the target computer vision application. This framework aims to guide future research and highlight the potential 
of synthetic data in addressing key DL challenges like adversarial examples, data bias, and domain adaptation. 

II. BACKGROUND 

This section provides a foundation in image formation and synthesis for machine learning applications. We start 
with a concise overview of the historical integration of image synthesis into the machine learning field. 
Subsequently, we delve into the methodologies employed for scene modeling and image synthesis. Finally, we 
explore recent advancements, including learning-based generative modeling, and clarify the distinction between 
image synthesis and data augmentation techniques. 
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A.  Historical Contest- 

This section provides a historical context for the integration of image synthesis and machine learning. Early 
Developments in Image Synthesis (1950s-1990s): The concept of computer-generated visuals emerged in the mid-
20th century, with pioneering work on fundamental techniques like bump mapping, shading, and ray tracing (1979). 
The 1980s and 1990s witnessed significant growth in computer graphics research fueled by advancements in 
computer games and the film industry. Applications have since expanded to encompass virtual reality, science, 
engineering, medicine, and advertising. Machine Learning Foundations (18th-20th Centuries): 

The groundwork for machine learning was laid in the 18th and 19th centuries with the introduction of least 
squares and Bayes' Theorem. Andrey Markov's Markov chains and Alan Turing's exploration of thinking machines in 
the 20th century were further milestones. The Perceptron (Rosenblatt, 1958) marked the initial foray into deep 
learning (DL) and neural networks, with core concepts emerging as early as the 1940s. A second wave of 
development in the 1980s introduced core DL ideas like convolutional neural networks, backpropagation, 
reinforcement learning, and recurrent neural networks. 

Deep Learning Revolution and the Rise of Synthetic Data (2010s-Present): The third wave of deep learning, 
starting in the early 2010s, is often attributed to the work of Krizhevsky et al. This period saw rapid advancements in 
training deeper networks with techniques like dropout, batch normalization, and residual connections. The 1980s 
witnessed the convergence of computer vision and computer graphics due to the need for ground truth annotations for 
evaluating optical flow algorithms using synthetic images. Optical flow, a crucial aspect of computer vision, heavily 
relies on synthetic data due to the difficulty of manual annotation and the need for specific scene configurations in 
real data. The first publicly available training set for optical flow, the Middlebury dataset, only emerged in 2011. 
Recent advancements in deep learning have further fueled the use of large-scale synthetic data, often involving 
pasting simple 3D objects onto background images. 

B. Production of visual data- 

This section explores image data generation for machine learning applications. It covers content creation, 
rendering, and key considerations for training data. 

Content Creation: Content creation involves defining the virtual environment, objects, and settings for sensor 
simulation. The complexity can range from simple objects to fully featured scenes, depending on the application. 
Common approaches include building complete virtual environments with simulated sensor movement or generating 
content on-demand using procedural techniques. Procedural generation utilizes algorithms to create diverse content, 
including objects, materials, and lighting conditions. 

Rendering: Rendering simulates how light interacts with the environment and sensors capture this interaction. 
Light transport theory describes this process, and the rendering equation mathematically represents it. However, 
solving this equation is computationally expensive. Rasterization and ray tracing are the two main rendering 
categories. Rasterization prioritizes speed and is commonly used in game engines. Ray tracing offers superior 
accuracy and flexibility but requires more computation. 

Considerations for Training Data: Feature Variation and Coverage: The generated data should encompass a 
broad range of features representative of the real-world application domain. 

Domain Realism: Minimizing discrepancies between synthetic and real-world sensor data is crucial. Domain 
transfer models can be employed for post-processing if necessary. 

High-Quality Annotations: Synthetic data offers the advantage of automatically generating high-quality 
annotations and metadata. Scalable Data Generation: The data generation process should be efficient to produce 
large volumes of annotated data points. 

Learning-Based Image Synthesis: The emergence of deep learning has introduced generative models like 
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) for image creation. These models 
operate directly in pixel space, with a neural network generating complete images. GANs utilize a two-part training 
process: a generator that creates images and a discriminator that distinguishes real from synthetic data. Through an 
iterative process, both models improve, leading to increasingly realistic synthetic images. However, controlling the 
content generation process in GANs remains a challenge. 
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Figure 1. Procedural modeling defines a scene using parameters like shapes, materials, lighting, and sensors to create images or videos. 

 
Data Augmentation (for reference only): 

Data augmentation techniques modify existing training data samples to increase dataset size and improve model 
performance. This survey focuses on image synthesis for generating complete training datasets and excludes 
augmentation methods. 

III. EXPERIMENT AND RESULT 

This section explores image synthesis techniques for machine learning, categorized based on the modeling and 
rendering processes involved (refer to Figure 4 in the original paper). 

Modeling: Procedural Modeling: Leverages mathematical functions and algorithms to define scene elements like 
object shapes, textures, and layouts. This offers control, flexibility, and variability in scene content creation. 

Data-Driven Modeling: Employs statistical models derived from real-world sensor data (e.g., 3D laser scans) to 
create realistic representations of objects or phenomena not easily modeled using physics or procedural techniques. 

Physically Based Modeling: Relies on established physical principles to define scene elements. This category can 
also include manually created models that visually adhere to physical laws but may not have a rigorous underlying 
scientific formulation. 

Non-Physically Based Modeling: Encompasses scene content that does not strictly adhere to physical rules or 
cannot be modeled using the above approaches. Models are often created randomly or based on abstract ideas. 

Rendering: Real-Time Rendering: Utilizes real-time visual simulators, often game engines, to directly generate 
images or extract data from existing game environments. Game engines have become a valuable source of synthetic 
data due to their advancements in creating realistic visuals. Techniques for extracting data from commercial games 
without access to source code involve specialized software solutions. 

3D Development Platforms: Platforms like Unity and Unreal Engine, originally designed for game development, 
offer tools for various applications, including synthetic data generation. These platforms primarily rely on 
precomputed lighting and rasterization rendering for high frame rates. Modern versions are starting to incorporate 
real-time ray tracing features. 

Simulator-Based Rendering: Certain simulators, such as physics engines and driving simulations, can also be used 
to generate synthetic visual data for machine learning tasks, even if their primary purpose lies in other research areas. 

Offline Rendering: Prioritizes quality over speed and allows for techniques like ray casting, rasterization, and 
physically based ray and path tracing. Offline renderers offer the highest level of photorealism achievable with current 
technology. Several commercial and open-source offline renderers are available for synthetic data creation. 
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Object Infusion: Involves offline rendering of objects that are then inserted onto background images to create the 
final scene. This category also includes techniques that essentially cut and paste objects from one image to another. 

A. Computer Vision Training Data Generation Technique- 

Computer Vision Applications Benefiting from Image Synthesis, this section explores computer vision research 
areas that leverage image synthesis for training data. It builds upon the image synthesis taxonomy. Table 1 
summarizes computer vision tasks where synthetic training data has been prevalent in the past decade. These tasks 
encompass object detection, segmentation (semantic, instance, point-cloud), recognition (object, face, scene), pose 
estimation, optical flow, depth estimation, and robotics/autonomous driving. 

The analysis highlights feature-based alignment, dense motion estimation (including optical flow), stereo 
correspondence, scene recognition, structure from motion, and computational photography as the primary 
beneficiaries of image synthesis techniques. Notably, tasks like object recognition and scene understanding have 
witnessed significant advancements due to the rise of deep learning and the emphasis on neural networks. This section 
emphasizes the value of image synthesis in generating training data for various computer vision applications, paving 
the way for further exploration. 

B. Overview Of Image Synthesis Techniques- 
This section explores how computer vision benefits from image synthesis for generating training data. It 

complements the image synthesis taxonomy presented earlier (not shown here). 
Key Applications: Synthetic training data has been prevalent in various computer vision tasks over the past decade. 
These include object detection, segmentation (semantic, instance, point-cloud), recognition (object, face, scene), pose 
estimation, optical flow, depth estimation, and robotics/autonomous. 
Beneficiaries: Feature-based alignment, dense motion estimation (including optical flow), stereo correspondence, 
scene recognition, structure from motion, and computational photography are the primary beneficiaries of image 
synthesis techniques. 

Fundamental Concepts: Two key ideas bridge the gap between synthetic and real-world data: 
Domain randomization introduces randomness into simulated content to enhance the model's ability to generalize to 
real-world variations. Rendering randomization varies lighting and camera setups during image rendering, mimicking 
real-world scenarios. 
Examples: 

Pose Estimation: Synthetic data pipelines for pose estimation tasks focus on image diversity rather than 
realism to avoid overfitting. These methods leverage object infusion, rendering randomization, and domain 
randomization. 
Dense Motion Estimation (Optical Flow): Early methods used procedural modeling for offline rendering. Later 
advancements include real-time rendering using game/simulator engines and short animated films, enabling larger 
training sets with complex motions. Notably, domain randomization and physically based modeling are crucial for 
this task. 

Stereo Correspondence and Depth Estimation: Disparity and depth estimation are closely related tasks in 
stereo vision. Synthetic data sets like FlyingThings3D and Unreal Stereo leverage game/simulator engines and 
physically based modeling to generate disparity ground truth maps. 
Recognition: Semantic segmentation is a crucial task for scene understanding. Driving simulators and games featuring 
urban environments have revolutionized image synthesis for this purpose Techniques like semi-automatic pixel-level 
annotation and offline unbiased path-tracing rendering are used for ground truth labeling.  
Image Creation and Computational Photography: Simulating camera effects for autonomous driving applications is an 
emerging field. Recent techniques leverage offline physically based rendering and non-procedural modeling to create 
training data for various camera sensor types. 

Intrinsic Image Decomposition: This task involves separating an image into reflectance and illumination 
layers. Modern techniques employ path tracing, scene databases, and measured materials to achieve this. 
In conclusion, image synthesis plays a vital role in generating diverse and controllable training data for various 
computer vision tasks. This paves the way for further exploration of advanced image synthesis techniques for even 
more robust computer vision applications. 
 
C. Comparative Qualitative Analysis- 

This section proposes a method for evaluating the quality of data creation methods for computer vision tasks. It 
introduces three factors: 
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Data Complexity: This combines visual complexity (rendering techniques used) and data production efficiency 
(speed). Photorealistic, real-time rendering with automation gets the highest score. 

Performance Improvement: This measures how much a method improves over baseline performance on real or 
synthetic data. 

Relative Quality Index: This is a weighted combination of data complexity and performance improvement. 
Figures 2-5 show sample evaluations for pose estimation, optical flow, disparity/depth estimation, and recognition. 
The key takeaways are: 

 
Figure 2- : Object vs. Human Body Pose Estimation: A table presents quality scores (based on complexity and performance) for object and human 

body pose estimation frameworks. 

 

Figure 3- Dense Motion Estimation (Optical Flow): The table summarizes optical flow generation frameworks using a quality score that reflects 
complexity and performance. 

 
Figure 4- Stereo Correspondence and Depth Estimation: The table categorizes frameworks for scene flow, disparity, and depth estimation with 

quality scores based on complexity and performance within each category. 

Simple methods with domain/renderer randomization can achieve high performance for pose estimation. 
Procedural modeling and physically based rendering offer better visual complexity and performance for optical flow. 
Domain/renderer randomization is promising for scene flow estimation. Realistic rendering with automation is 
desirable for recognition tasks. 

These results suggest that while data complexity and performance are important, there's room for improvement in 
data creation methods, especially for efficiency and automation. 
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Figure 5- Recognition: A quality score table is provided for semantic segmentation, object detection, tracking, classification, point cloud 

segmentation, and face recognition frameworks. The score reflects complexity and performance. 
 

D. Result- 

Synthetic data holds immense potential for computer vision tasks, but it's still in its early stages. Here are some 
key areas for future exploration: 

Beyond Efficiency: While reducing annotation effort is crucial, future work should explore optimal data 
distribution and image synthesis for the best coverage within that distribution. We can explore if creating highly 
complex or rendered objects benefits learning. 

Bias Control: Real data can be biased. Synthetic data offers the ability to control the training data distribution to 
mitigate bias in areas like demographics. 

Advanced Benchmarking: Existing methods trained-on synthetic data and evaluate on real data. Future work can 
involve testing models on high-quality synthetic images for more rigorous statistical testing across various factors like 
object types, scene conditions, and demographics. 

Meta-data and Analysis: Synthetic data allows control over image content and generation of detailed meta-data 
(depth, camera settings, etc.). This enables comprehensive analysis of model performance during testing. Reducing 
Domain Gap: The gap between synthetic and real images is a major hurdle. While photorealistic rendering can 
produce very realistic images, computational resources and replicating all real-world details remain challenges. 
Integration of synthetic and real data can also be a powerful approach. 
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Generative Adversarial Networks (GANs): GANs show great promise for creating training data. Future work can 
explore incorporating more data (demographics, physical constraints) into the image generation process. However, 
control over GAN-based image generation and creating images beyond the training data distribution remain 
challenges. 

Ethics and Privacy: Synthetic data can be a valuable tool in the big data era, but privacy concerns need to be 
addressed. It can be used to ensure data diversity and individual privacy protection, especially for sensitive data. 
Ethical considerations include deanonymization risks and mitigating data set bias through the creation process. 

 
Figure 6- In this work, we demonstrate how meta-data (e.g., depth, occlusion) from synthetic data can be used to analyze object detection model 

performance variations across different object classes. 

IV.CONCLUSION 

Recent advancements in machine learning (ML), particularly deep learning (DL), have highlighted the critical role 
of training data quality and quantity in achieving effective algorithms. Image synthesis techniques have emerged as 
a powerful tool to expedite the production of training data, offering significant flexibility in both data volume and 
quality control. This approach facilitates the automation of data synthesis within a well-defined ethical framework, 
allowing for tailored data generation specific to the application's requirements, while also enabling a high degree of 
control over the entire production pipeline. 
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