How to Build Mersenne Primes

H H Sri Vishwa Shekhara Bharathi
Alias Dr. Aswatha Narayan Muthkur
Periyar, Salem,TN, India

Abstract - We uee Euclid's formula for PERFECT NUMBERS to develop MERSENNE PRIMES in a very simple way amenable to computers.

A number N is perfect if the sum of the factors of N inclu=
ding 1 and N IS EQUAL TO 2N. EUCLID has given a formula for PERFECT NUMBERS as
$\mathrm{PN}=2^{\wedge}(\mathrm{N}-1)\left\{2^{\wedge} \mathrm{N}-1\right\}$ where $\left(2^{\wedge} \mathrm{N}-1\right)$ is a prime.
Incidentally $\left(2^{\wedge} N-1\right)$ is given the name MERSENNE NUMBER and if it works out to be a PRIME then N should necessarily be a prime and is given the name MERSENNE PRIME. We consider prime values only for N chosen from list generated using MUTHKUR's THEOREM which states that (taken from my Ph.D thesis)

THEOREM : If there is a higher MERSENNE prime then that corresponding prime exponent is the sum of lower MERSENNE PRIME EXPONENTS including 2 which is also a MPE.

Proof: Let $\mathrm{Mp} 1, \mathrm{Mp} 2, \mathrm{Mp} 3, \ldots . . \mathrm{Mpk}$ be a set of Mersenne Primes.

$$
\sigma(\mathrm{Mp1.Mp2.Mp3....Mpk})=\sigma(\mathrm{Mp} 1) . \sigma(\mathrm{Mp} 2) . \sigma(\mathrm{Mp} 3) \ldots . . \sigma(\mathrm{Mpk})
$$

$$
=2^{\wedge} \mathrm{p} 1.2^{\wedge} \mathrm{p} 2.2^{\wedge} \mathrm{p} 3 \ldots \ldots .2^{\wedge} \mathrm{pk}=2^{\wedge}(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3+\ldots+\mathrm{pk})-1+1
$$

$$
=\sigma(\mathrm{MP}) \text { where } \mathrm{P}=\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3+\ldots .+\mathrm{pk} \text { is also a prime. }
$$

Hence the Theorem.
The formula

$$
\mathrm{PN}=2^{\wedge}(\mathrm{N}-1)\left\{2^{\wedge} \mathrm{N}-1\right\}=2^{\wedge}(2 \mathrm{~N}-1)-2^{\wedge}(\mathrm{N}-1)
$$

and this involves only powers of 2 which a computer can handle very easily.
LET $\mathrm{N}=2 \quad \mathrm{PN}=8-2=6$ which is perfect.
LET $\mathrm{N}=3 \quad \mathrm{PN}=32-24=28$ which is perfect.
LET $\mathrm{N}=5 \quad \mathrm{PN}=2^{\wedge} 9-2^{\wedge} 4=512-16=496$
Keep on dividing 496 by 2 successively till we reach an odd number, 31 in this case, and add 1 to it and again continue division by 2 successively. If the process reaches 2 and finally 1 then we arrive at a MERSENNE PRIME. Otherwise NOT. Here 5 is a Mersenne prime exponent and 31 is a Mersenne prime. By this, the cumbersome method of testing an odd number with lakhs of digits in it for primality gets reduced to division by 2 successively in a most simple way with definite conclusion whether it is mersenne prime or not.

Let $\mathrm{N}=7 \quad \mathrm{PN}=2^{\wedge} 13-2^{\wedge} 6=8192-64=8128$ which is PERFECT.
$(1+2+4+8+16+32+64+127+254+508+1016+2032+4064+8128=16256)$

Hence 7 is a Mersenne Prime Exponent and 127 is a Mersenne Prime.

Let $\mathrm{N}=11 \quad \mathrm{PN}=2^{\wedge} 21-2^{\wedge} 10=2097152-1024=2096028=4.9 .58223$
Hence 11 is not a Mersenne Prime Exponent.

Let $\mathrm{N}=13 \mathrm{PN}=2^{\wedge} 25-2^{\wedge} 12=33554432-4096=33550336=2^{\wedge} 12.8191$
and 8191 is a prime. Hence 13 is a Mersenne Prime Exponent.

Let $\mathrm{N}=17 \quad \mathrm{PN}=2^{\wedge} 33-2^{\wedge} 16=8587869056=65536.131071$
and 131971 is a prime. Hence 17 is a Mersenne Prime Exponent.

Let $\mathrm{N}=19 \mathrm{PN}=2^{\wedge} 37-2^{\wedge} 18=137438691328=262144.524287$
and 524287 is a prime. Hence 19 is a Mersenne Prime Exponent.

This process continues. Finding next higher Mersenne Prime Exponent is half way through for people with super computer facilities and the like.

And in conclusion, I request "The Electronic Frontier Foundation of America "and " GIMPS " to provide me a Scholarship and a Prize money for this theoretical investigation to persue my research further in this field.

I am a senior citizen 88 years aspiring for lifetime achievement award having

1. 17 th century mathematics proof for FERMAT'S LAST THEOREM.
2. PROOF - Infinitude of Mersenne Primes and in turn that of Perfect Numbers.
3. Discovery of " COSINE TRISECTION QUARTICS " connected with trisection of angles.
4. A straight line involving Mersenne Primes,Fibonacci numbers and Lucas numbers.
5. Developing BIMAGIC SQUARES using staggered arithmetic progressions based on HINDU TANTRA SHASTRA specially BHUVANESWARI KAKSHAPUTI TANTRA.
6. EX-IN identity wherein sum of four squares is equal to sum of eight other squares in six different ways using "in-radius of a Pythagorean triangle is an integer " is made use of.
7. NEW METHOD OF FACTORIZATION.
8. Overcoming CARDAN's Irreducibility
9. Recretional Mathematics --a Study of the numbers 123456789 \& 12345679.
10. prime factors of $100000 \ldots . .000001$
11. Factorization problem is on hand with successful results
