International Journal of Latest Transactions in Engineering And Science (IJLTES)

Securing EHRs Using Blockchain Technology

Sagarika Behera', Aarathi Nair’, S. M. Divyavani’, Sabita G*, Sophia Maria Augustine’

!dsst. Professor, Department of CSE, CMR Institute of Technology, Bengaluru
23 43Final Year, B.E, Department of CSE, CMR Institute of Technology, Bengaluru

Abstract - Electronic Health Records (EHRSs) are currently stored on centralized databases which make the medical data
largely non-portable. Database storage can expose the data to integrity issues and accuracy problems especially in the
medical field. Blockchain which is also a popular topic now- a-days is able to ensure data security while using the
distributed and decentralized topology. In our proposed system patients themselves retain control over 'who can access
their data'. The basic architecture includes building a network of trusted data repositories, to which a series of 'smart
contracts' decide the connection. Utilizing the work of this proof of concept, the framework of Blockchain 4.0
Hyperledger Fabric will be implemented to solve the above stated problem. A Hyperledger Fabric Composer will be used
to set up the development environment, running environment and playground for running the Blockchain. Besides these,
Channel and Chaincode will also be used in this system.

Keywords: EHRs, Blockchain, Hyperledger Fabric, Hyperledger Composer, Chaincode
[. INTRODUCTION

Electronic Health Records or EHRs contain health data of patients which is sensitive in nature, and it is utilized by
many authorized users within and across medical institutions. This can lead to integrity issues and accuracy
problems. Hence, the use of blockchain as technology for secure retrievals and transactions ensures privacy and
security of the patient’s health data during several different types of clinical practices. We utilize the Hyperledger
Fabric, which leverages container technology to host smart contracts called ‘Chaincode’ for applying specified code
when certain conditions are fulfilled. Blockchain Technology delivers a distinctive chance to aid the medical sector.
Our EHR solution allows the healthcare professionals to acquire an entire medical history of the patient in order to
provide accurate medication and treatment. This solution then keeps logs of the interactions with that history on the
distributed ledger of the system in a transparent, auditable and secure manner. This solution is an individual platform
that complements the overall user experience and improves that. It also improves the care for patients by placing
them at the center.

A Hyperledger Fabric is used that is based on a permission network, which indicates that all the participants are
required to be authenticated in order to participate and transact on the blockchain. Here, all the members are enrolled
into the Membership Service Provider (MSP) to create a permissioned network. MSP is able to manage the role and
permission of each user in order to use the application. Therefore, all the users are authenticated and identified by
the system while using it. Hence, the users who request and operate into the medical records must be granted
permission in order to access certain information. The Hyperledger blockchain network is based on permissionning
and requires users to validate as authorized to use it. The access control rules in the Hyperledger modeling define the
various permissions. All the members are enrolled into the Membership Service Provider (MSP) to create a
permissioned network. MSP manages the roles and permissions of each user in order to use the application.

Medical information often contains highly sensitive data; therefore a permissioned blockchain such as a Hyperledger
Fabric serves to maintain the privacy that is highly required for such an application. A Hyperledger Fabric is a
framework for blockchain infrastructure development for distributed ledger solutions which provides confidentiality,
resilience, flexibility and scalability. This is a finer solution for accessing health records, as it boards multiple layers
of permissions, which means that the owner of a data set has complete control over what parts of their data is
accessed.

II. RELATED WORKS

D. C. Nguyen et.al.[2] discussed EHRs, which use a collaboration application integrating blockchain and the
decentralized Interplanetary File System (IPFS) on a mobile cloud platform to build a transparent access control

Volume 10 Issue 3 September 2020 9 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

mechanism using smart contracts to ensure safe collaboration of EHRs between various patients and other medical
providers. The empirical results show that this proposal offers an effective solution for reliable exchange of data on
mobile clouds while preserving patient sensitive health information against potential threats. This system assessment
and security review also shows technological changes in the design of lightweight access control, minimal network
latency with high standards of protection and data privacy, relative to current models of data sharing.

The concepts of centralized, decentralized and distributed architectures are briefly explained with the help of
relevant examples and important applications [3]. It gives an overview of how the consensus algorithms are used to
secure blockchain. Since health data is seen to be very sensitive in nature, emphasis on the security implementations
utilizing blockchain is discussed in detail. This case study also addresses the several drawbacks faced by variety of
health systems designs and also provides with suggestions and recommendations for future projects, researches and
developments having improved functionalities. Sara Rouhani, et al. [4] discusses inability to access medical data
(produced by a physician) in a timely and efficient manner is a serious problem in the delivery of health care
worldwide. Guang Yang, et al. [5] discusses about distributed ledger which is completely immutable. A ledger is
nothing but a chain of blocks which is time-stamped. The ledger is essentially a chain of blocks connected by
cryptographic hash functions, in which each block has the previous block's hash value. To the current blockchain a
new block can be added. The block can be appended to the existing chain each time a new block has to be added.
Due to the sensitivity of the data, the access control is of utmost importance. Due to the inherent characteristics of
the blockchain, it has a great potential in the field of managing Electronic Health records. The decentralized and
immutable features of blockchain technology are discussed in detail [6], which allows for autonomy and anonymity.
Blockchain brings in a lot of honesty to the doctors in the patient health history point of view, as it is immutable.
Hence the data remains confidential without affecting its integrity in real time, which in turn reduces errors. MedRec
is a distributed system which gives an individual user control over his/her identity and the distribution of their
information [7]. Blockchain is used to control a series of smart contracts which will determine who can access the
data. The servers here are connected and maintain a growing blockchain, as opposed to the network. Those servers
are the network's managing members. A 'proof of work' algorithm is used to protect the blockchain’s credibility.

A. Azaria et.al shows us that block chain technology is used to implement a decentralized system for the
maintenance of electronic medical records (EMRs) [8]. It is suggested that the blockchain could be considered as a
set of decentralized compute resources, each such resource being an individual entity which could transcend
between two states through cryptographic transactions. These entities were associated with a logic that would
distinguish a transaction from being valid or not. For every valid transaction, the blocks would undergo a
transformation, such a transformation is known as ‘smart-contracts’. Ethereum blockchain was employed to
implement smart-contracts, thereby developing a record management system which could furnish medical
information to the patients as well as all medical service providers. Blockchain properties were used to design the
system in such a manner that the data would remain confidential, tamper-proof and easily accessible. This design
facilitated data miners with large pools of anonymous medical data, which could be used to interpret the wide array
of medical treatment patterns and socio- economic demand patterns.

III. KEY TECHNOLOGIES

Utilizing the Hyperledger Fabric Framework by the Linux foundation, we can easily develop industry oriented
blockchain applications. The general flow of blockchain infrastructure applications created using blockchain is
discussed in this section as depicted in Fig 1. This figure describes the typical structure and flow for a blockchain
network having a business application. The set of users would interact with the main user interface and doing so will
end up invoking some type of query to the database. The SDK or Software Development Kit will verify the
blockchain’s global state and the blockchain will be queried via service-based RESTful APIs. The blockchain
network will inform other peers in the network for consensus. The chaincode is responsible for the access control
policies in the blockchain network. After the positive consensus, a transaction in the distributed ledger containing
several other executed transactions will be submitted to the blockchain, whereupon a corresponding key-value pair
will be generated or updated depending on the type of request. A token of 128-bit is generated whenever a new user
is created, and that token is also stored in the database for the backend. The credentials are verified whenever the
user logs in the application and the corresponding token is retrieved from the backend via the RESTful API. The
application now passes the user tokens with every query and the token is verified in the backend using the RESTful
APIL

Volume 10 Issue 3 September 2020 10 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

PEER

Chaincode/
Smart

Queries and Invokes Contract

{ Distributed Ledger

Fig 1: Generalized Blockchain Application diagram

«<-

APPLICATION SDK

The structure of blockchain network and different components are shown in the Fig. 2. This figure describes the
blockchain structure as described and explained in [9]. The different components are as follows:

Blockchain Structure: A blockchain is a growing list of records, called “blocks” that are generally
linked to each other using cryptography. Blocks are data structures with the intent of bundling transaction sets and
being spread to all network nodes. These blocks are established by miners. Each of these blocks contains a previous
block's cryptographic hash, a timestamp, a nonce and transaction data generally represented as a "Merkle tree." A
preceding block hash (Prev hash) in a sequence is a tamper-proof sequence because a hash is very sensitive as a
function of the design. So, to change any variable of any one of the hashes in a given block would cause a domino
effect, altering all of the previous transactions in the block.

e

Block n-1 | (Block n | (Block n+1

‘ Prev_hash || Timestamp ‘_I—>| Prev_hash H Timestamp |_I—P| Prev_hash || Timestamp |
|

‘ Tx_root | | Nonce ‘ | Tx_root ‘ | MNonce l | Tx_root | | Nonce |
\ | | \

G p— |
/ ’“*“"} =,

[Hash23] [Hash23 I [Hash23] [HashZS 1

1 ‘ f f
= [[(==

Fig 2: Structure of Blockchain Network (Referred from https://en. wikipedia.org/wiki/Blockchain)

@ Nonce: A nonce is a "number used only once." A nonce is a 32-bit (4-byte) numerical string for a bitcoin block.
This is generally called a “target hash” that miners solve for.

® Merkle Tree: A Merkle tree lists all transactions in a block by generating a digital fingerprint of the entire
collection of transactions, enabling a consumer to verify if a transaction is included in a block or not. These are
generated by hashing pairs of nodes continuously, until just one hash remains which is called as Merkle Root.

® Smart Contracts: Smart contracts are program files that specify the conditions for verifications and
authorizations. They are pre-defined in nature and it is impossible to tamper with its contents. This allows for

Volume 10 Issue 3 September 2020 11 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

smart contracts to ensure security and fraud prevention, which can act as a result from its transparent nature.
Ethereum Technology utilizes such smart contracts under the blockchain technology.

® DApps: DApps refers to decentralized applications that do not have a centralized infrastructure. The backend
structure of DApps is decentralized in nature with respect to storage and communication. Decentralized nature
of the application allows for the generation of a peer to peer network which is the core concept of the
blockchain technology.

IV. PROPOSED SYSTEM

Fig 3 shown in this section describes the architecture of our proposed system. The proposed architecture of the
blockchain application considers three types of users: Doctors, Patients and Researchers. The users will use the web
user interface (UI) application to perform view, request or update to the data. Once the web server receives the
request from users, then it will go for verification from Chaincode. The web server is only allowed to access the
Blockchain after it is verified by Chaincode. After that, the Blockchain will check the participant role and
permission that will be assigned by the Membership Service Provider (MSP). All the members in the Blockchain
must be identified in order to perform any actions. If the user permission is allowed, then the Blockchain will
perform retrieve or update to the medical record according to the user’s request received by Blockchain.

This proposed architecture is a proof of concept for the healthcare industry, where multiple hospitals with already
existing large centralized databases can expand their current systems by incorporating such high level of security
technology pertaining to transactions of assets like sensitive health data.

WEB APPLICATION BLOCKCHAIN NETWORK

Web Server Chain|code

V/d N\
Membership
| Senice |
\ Provider
/

4 Interact
g B

/7777,

y

(" huthenticate each
| member /

View/Request/Update ‘

2 A Peers
O Access Invoke

-t — Y

~ = Z — ,./. T .y
\\ :;., Medical Records <, "/:, Participants

Users o - = SR < o

Fig 3: System Architecture

Any interactions with the health records are recorded as network transactions. Transactions are viewable only to the
transaction-related participants. Examples of how transactions happen in the application are given here.
Patient Write Access Grant:

Patient gives write access permission to Doctor for the medical records.

Doctor’s ID is attached on the blockchain to Patient’s asset.

Patient Read Access Grant:

Patient gives read access permission to Doctor for the medical records.

Volume 10 Issue 3 September 2020 12 ISSN:2321-0605

—_—

w

SnpEo o

International Journal of Latest Transactions in Engineering And Science (IJLTES)

o Doctor’s ID is attached on the blockchain to Patient’s asset.

Doctor Referring Patient:

. Doctor updates the permissions to allow another Doctor to read the Patient’s medical record
d Chaincode will check that the referring Doctor has permission to write on the medicalrecord
i Referred Doctor’s ID is added to Patient’s authorized asset

. Patient must add referred Doctor explicitly to his authorized list for write permission

Pseudo code for building a Blockchain Application:

BEGIN
Start the Fabric
Prepare the Fabric for development / deployment

Deploy the .bna Archive File using:
yo hyperledger-composer: businessnetwork

Model File (.cto) to define the participants, assests, and transactions.
Script File (js) specifies the functions to execute the definestransactions.
Access Control File (.acl) specifies the access control business rules.
Generate the admin card
Start the Rest Server
Build a web application using Angular / React etc depending on thebusiness requirements
7. Stop fabric END

V. RESULTS AND DISCUSSIONS

Fig 4(a) and 4(b) depicts the process to start the fabric. This is the first step to deploying any type of business
network on a blockchain using Hyperledger Fabric.

Volume 10 Issue 3 September 2020 13 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

Applications ¥ [Terminal = Wed 11:46 @
aarathi@aarathi-Lenovo-E41-80: ~/fabric-dev-servers

File Edit View Search Terminal Help
:~$ cd ~/fabric-dev-servers

~/fabric-dev-servers$ export FABRIC_VERSION=hlfvil
:~/fabric-dev-servers$./startFabric.sh
Development only script for Hyperledger Fabric control
Running 'startFabric.sh'
FABRIC_VERSION is set to 'hlfvil'
FABRIC_START_TIMEOUT is unset, assuming 15 (seconds)
Removing peer@.orgl.example.com ... done
Removing couchdb ... done
Removing ca.orgl.example.com ... done
Removing orderer.example.com ... done
Removing network composer_default
Creating network "composer_default” with the default driver
Creating ca.orgl.example.com ...
Creating couchdb ...
Creating ca.orgl.example.com
Creating orderer.example.com ...
Creating orderer.example.com
Creating orderer.example.com ... done
Creating peer®.orgl.example.com ...
Creating peer®.orgl.example.com ... done
sleeping for 15 seconds to wait for fabric to complete start up
2020-06-10 06:15:49.790 UTC [msp] GetLocalMSP -> DEBU 001 Returning existing local MSP
2020-06-10 06:15:49.798 UTC [msp] GetDefaultSigningIdentity -> DEBU @02 Obtaining default signing identity
2020-06-10 06:15:49.792 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2020-06-10 06:15:49.812 UTC [msp] GetlocalMSP -> DEBU 004 Returning existing local MSP
2020-06-10 06:15:49.812 UTC [msp] GetDefaultSigningIdentity -> DEBU 865 Obtaining default signing identity
2020-86-10 06:15:49.813 UTC [msp] GetlLocalMSP -> DEBU @86 Returning existing local MSP
2026-66-18 06:15:49.813 UTC [msp] GetDefaultSigningIdentity -> DEBU @867 Obtaining default signing identity
2020-06-10 06:15:49.813 UTC [msp/identity] Sign -> DEBU 008 Sign: plaintext: ©AA2060A@74F7267314D53501296062D...6D706F736572436F6E736F727469756D
2020-06-10 06:15:49.813 UTC [msp/identity] Sign -> DEBU 002 Sign: digest: AE4D2A26A88C829C123EE4D21B8B6613C9A0984B3021084AB26FBFAT62372440
2820-06-16 06:15:49.814 UTC [msp] GetlLocalMSP -> DEBU @@a Returning existing local MsSP
2026-06-16 06:15:49.814 UTC [msp] GetDefaultSigningIdentity -> DEBU 8@b Obtaining default signing identity
2820-66-10 06:15:49.820 UTC [msp] GetlLocalMSP -> DEBU 86c Returning existing local MsSP

SAIA_AR_1@ AR+1C.40 9@ UTC Tmenl Fatnafaul+cianinnTdantitu _« ncoll @ad nhtaininn dafanlt cinninn idantitu

Fig 4(a): Start Fabric

Applications ¥] Terminal ~ Wed 11:47 @ |

aarathi@aarathi-Lenovo-E41-80: ~/Fabric-dev-servers

File Edit Vi Search Terminal Help

2020-06-10 06:15:49.813 UTC [msp/identity] Sign -> DEBU 888 Sign:
2020-86-10 06:15:49.813 UTC [msp/identity] Sign -> DEBU 809 Sign: digest: AE4D2A20A88C829C123EE4D21B8B6613C9A0984B3021084AB26FBFAT62372440
2020-06-10 06:15:49.814 UTC [msp] GetLocalMSP -> DEBU 60a Returning existing local MSP

2020-06-10 06:15:49.814 UTC [msp] GetDefaultSigningIdentity -> DEBU @0b Obtaining default signing identity

2020-06-10 06:15:49.820 UTC [msp] GetLocalMSP -> DEBU 80c Returning existing local MSP

2620-06-16 ©6:15:49.820 UTC [msp] GetDefaultSigningIdentity -> DEBU 86d Obtaining default signing identity

plaintext: GAA2060A074F7267314D53501296062D. ..6D706F736572436F6E736F727469756D

2020-06-10 06:15:49.820 UTC [msp/identity] Sign -> DEBU 80e Sign: plaintext: GADFO60A1BO8021A060895F581F70522...FDD282420DDAB6D91BOT6FCA16715AEC

2020-06-10 06:15:49.820 UTC [msp/identity] Sign -» DEBU @6f Sign: digest: C8B76B49FCDO7F6C180C6A4062E454B69E483A3054C87CFB8406B1E5CEF34A2CE
2020-06-10 06:15:49.880 UTC [msp] GetlLocalMSP -> DEBU 81@ Returning existing local MSP

2020-06-10 06:15:49.888 UTC [msp] GetDefaultSigningIdentity -> DEBU @11 Obtaining default signing identity

2020-06-10 06:15:49.881 UTC [msp] GetLocalMSP -> DEBU 812 Returning existing local MSP

2020-06-10 06:15:49.881 UTC [msp] GetDefaultSigningIdentity -> DEBU 013 Obtaining default signing identity

2020-06-10 06:15:49.881 UTC [msp/identity] Sign -> DEBU 014 Sign: plaintext: OADFO60A1BO8021A060895F581F70522...ABBB0OOC59F5012080A021A0012021A00

2620-06-16 ©6:15:49.881 UTC [msp/identity] Sign ->» DEBU 815 Sign: digest: 482CEGB5C988BBFIF487F11CFB515D265D01271CC7EDDEE68D6501A426D3068E6
2020-06-10 06:15:49.882 UTC [channelCmd] readBlock -> DEBU 016 Got status: &{NOT_FOUND}

2020-06-10 06:15:49.882 UTC [msp] GetlocalMSP -> DEBU 817 Returning existing local MSP

2020-06-10 06:15:49.882 UTC [msp] GetDefaultSigningIdentity -> DEBU 018 Obtaining default signing identity

2020-06-160 06:15:49.883 UTC [channelcmd] InitCmdFactory -> INFO @19 Endorser and orderer connections initialized

2020-06-10 06:15:50.084 UTC [msp] GetLocalMSP -> DEBU 61a Returning existing local MSP

2020-06-10 06:15:50.885 UTC [msp] GetDefaultSigningIdentity -> DEBU 01b Obtaining default signing identity

2020-06-10 06:15:50.086 UTC [msp] GetLocalMSP -> DEBU 81c Returning existing local MSP

2620-06-16 ©6:15:50.686 UTC [msp] GetDefaultSigningIdentity -> DEBU 81d Obtaining default signing identity

2020-06-10 06:15:50.086 UTC [msp/identity] Sign -> DEBU @81e Sign: plaintext: GADFO60A1BO8021A060896F581F70522...CDADA1006C6512080A021A0012021A00

2020-06-10 06:15:50.886 UTC [msp/identity] Sign -» DEBU @1f Sign: digest: D8C17C5875A85E94D6EB6GAT4AESS1045EC5D926256D4F989562FB661E79680D
2020-06-10 06:15:50.893 UTC [channelCmd] readBlock -> DEBU 0620 Received block: @

2020-06-10 06:15:56.894 UTC [main] main -> INFO 821 Exiting.....

2020-06-10 06:15:52.537 UTC [msp] GetLocalMSP -> DEBU 601 Returning existing local MSP

2020-86-10 06:15:52.537 UTC [msp] GetDefaultSigningIdentity -> DEBU 802 Obtaining default signing identity

2020-06-10 06:15:52.546 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized

2020-06-10 06:15:52.546 UTC [msp/identity] Sign -> DEBU 0604 Sign: plaintext: BAABO70A5CO8011AGCOBIBF581F70510...DF2446CTAD681AOBOAB0GA000A000A00

2020-86-10 06:15:52.546 UTC [msp/identity] Sign -> DEBU 805 Sign: digest: 55547BBFA6BESFDAA33C@1E4CAFFD3DFF32D814A6F1125E7000E585029AE1176
2020-06-10 86:15:53.533 UTC [channelcmd] executeloin -> INFO 806 Successfully submitted proposal to join channel
2020-06-10 06:15:53.533 UTC [main] main -> INFO 007 Exiting.....

:~[fabric-dev-servers$./createPeerAdminCard.shl]

Fig 4(b): Fabric Started

Fig 5 depicts the creation of the first peer in the network. This is called the PeerAdmin. Having administration

capabilities this peer now has the privileges to add authorized peers to the network if needed.

Volume 10 Issue 3 September 2020 14 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

Applications ~ [E] Terminal = wed 11:49 8 T 0~

aarathi@aarathi-Lenovo-E41-80: ~/fabric-dev-servers (X
File Edit View Search Terminal Help

Running 'createPeerAdminCard.sh’
FABRIC_VERSION is set to 'hlfvi1'
FABRIC_START_TIMEOUT is unset, assuming 15 (seconds)

Using composer-cli at ve.19.20

ted business twork card file to
/tmp/PeerAdmn@hlfvl card

Successfully cre

Output file:

Command succeeded

Successfully imp d bu k card
card fi tmp/PeerAdmin@ghlfvi.card
Card name: PeerAdming@hlfvi

Command succeeded

The following Business Cards are available:

Connection Profile: hlfvi

Card Name Userld Business Network

PeerAdmin@ghlfvi | PeerAdmin

Issue composer card list --card <Card Name> to get details a specific card
Command succeeded

Hyperledger Composer PeerAdmin card has been imported, host of fabric specified as 'localhost'
:~/fabric-dev-servers$

Fig 5: Create a PeerAdmin Card

Applications ¥] Terminal = Wed 11:52 ¢ B 6@~

aarathi@aarathi-Lenovo-E41-80: ~[FYP (X

File Edit View Search Terminal Help
:~/FVPS composer network install --

« Installing business network. This may take a minute.

Si work tutorial

card PeerAdmin@ghlfvl --archiveFile tutorial-network@d.o0.1.bna

‘L‘ version 0.0.1

sfully installed business n

Command succeeded

1~/FYPS composer network start --networkName tutorial-network --networkVersion 0.0.1 --networkAdmin admin --networkAdminE
nrollSecret adminpw --card PeerAdminghlfvl --file networkadmin.card
Starting business network tutorial-network at version 0.0.1
Processing these Network Admins
userName: admln

v Start\ng busmess network definition. This may take a minute.
i business network card:
Filename: networkadmn card

Command succeeded
:~/FYP$ composer card import --file networkadmin.card

Successfully imported business network card
Card file: networkadmin.card
Card name: admin@tutorial-network

Command succeeded

«/Pus composer network ping --card admin@tutorial-network
tion to the network . ssfully tested: tutorial-network
Business network version: ﬂ 0.1
Composer runtime version: 6.19.20
participant: org.hyperledger.composer.system.NetworkAdmin#admnin
identity: org.hyperledger.composer.systen.Identity#0a60cdbb5d776F3740236c5a54734923fa5251144edfddae79c92eb2d1c4fc96

The conn

Command succeeded

Fig 6: Deploying the business Network

Fig 6 corresponds to the various commands that are required to be executed for a successful deployment of the
business network. The first command is for installing the business network that utilizes the PeerAdmin card. Next we
need to start the business network and import the network admin card. Finally, we need to ping the network card to
check for successful deployment of the business network.

Fig 7 depicts the commands to run the composer playground for testing of blockchain network. The playground
needs to locally install in order to execute the testing purpose successfully.

Volume 10 Issue 3 September 2020 15 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

Applications ¥ [Terminal = Wed 11:54 8

aarathi@aarathi-Lenovo-E41-80: ~/FYP
File Edit view Search Terminal Help

busi ork card
Card file: networkadmin.card
Card name: admin@tutorial-network

Command succeeded

ser network ping --card admin@tutorial-network

FYPS compo:
c f te i: tutorial-network

The connect to th u ul
Business network version: 6.8.1
Composer runtime version: 0.19.20
participant: org.hyperledger.composer.system.NetworkAdmin#admin

identity: org.hyperledger.composer.system.Identity#0a60cdbb5d776737402a6c5a54734923Fa5251144edfddae79c92eb2d1cafcos

Command succeeded

:~/FYPS composer-playground
2020-06-10T06:22:58.746Z INFO :LoadModule :loadModule() Loading composer-wallet-filesystem from /home/aarathi/FYP/node_m
odules/composer-wallet-filesystem {}$

2020-06-10T06:22:59.134Z INFO :PlaygroundAPI :createServer() Playground API started on port 8088 {}5

2020-06-10T06:23:07.124Z INFO :PlaygroundAPI :createServer() Client with ID 'v364INh9f9EONVivAAAA' on host '::1' connected {}
$

2020-06-10T06:23:26.634Z INFO :PlaygroundAPT :createServer() Client with ID 'QcXqobJqTETqjHhMAAAB' on host '::1' connected {}
2020-06-10T06:23:27.003Z INFO :ConnectionProfileManager :getConnectionManagerByTyp Looking up a connection manager for type {"0":"hlfvi"}$
2020-86-160T06:23:32.101Z INFO :ConnectionProfileManager :getConnectionManagerByTyp Using this connection manager {"©":{"connectionProfileManager":
{18

2020-06-10T06:23:33.430Z INFO :HLFConnection sconstructor() Creating a connection using profile hlfvl to network tutorial-ne
twork {}$

2020-06-10T06:23:33.432Z INFO :HLFConnectien :createQueryHandler() attemping to load query handler module ./hlfqueryhandler {}$
2020-06-10T06:23:34.270Z INFO :ConnectionProfileManager :getConnectionManagerByTyp Looking up a connection manager for type {" "hlfv1"}s
2020-06-10T06:23:34.277Z INFO :HLFConnection :constructor() Creating a connection using profile hlfv1 to network tutorial-ne
twork {}$

2020-06-10T06:23:34.278Z INFO :HLFConnection :createQueryHandler () attemping to load query handler module ./hlfqueryhandler {}$

Fig 7: Composer Playground

After successfully deploying the business network, the blockchain network can be tested using the composer
playground, a local IDE for testing blockchain applications. Fig 8 shows how we can build and define our
blockchain network on the Hyperledger composer playground IDE. The modeling, logic and the access control files
are defined using the playground and deployed accordingly as a blockchain business network. Multiple revisions of
the archive file is also possible by utilizing the ‘deploy changes’ function.

Doctor Participant registry for org.acme.biznet.Doctor * Create el Partkdpant

ASSETS ID Data
Doctor_profile

Encounter

Medical_Record

Patient e e

Patient_profile
This registry is empty!

To create resources in this registry click create new at the top of this page
TRANSACTIONS

All Transactions

Fig 8: Testing the deployed .bna file

Volume 10 Issue 3 September 2020 16 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

hifv1 tutorial-network Define Test admin

1D Registry

Doctor

Date, Time Entry Type Participant
Doctor_profile

2020-05-14, 22:34:08 ActivateCurrentidentity none view record
Encounter
Medical Racord 2020-05-14, 22:33:13 StartBusinessNetwork none view record
Patient

2020-05-14, 22:33:13 Issueldentity none view record

Patient_profile

TRANSACTIONS ANINAC 14 1722132 AA AN et rim mAna i emmned

All Transactions

Fig 9: Transaction History

Fig 9 shows the transaction history. All the transactions such as creation, deletion, peer rights, etc. will be recorded
and the records are immutable in nature. This is the main feature of a blockchain network. It displays all the
transactions and this data cannot be modified. On the top right, we can even check out the current ID registry or
even change the business network.

Depending on the business requirements and technical feasibility, the front-end User Interface can be developed.
The proposed system acts as a proof of concept for the healthcare industry that have varying business requirements
and accordingly appropriate tech stack can be used to develop the web application such as Angular, React js etc.

VI. CONCLUSION AND FUTURE SCOPE

The confidentiality and integrity is of high importance in the healthcare domain. The Blockchain 4.0 is implemented
using Hyperledger Fabric framework provides a secure environment for storing the medical records. The proposed
system provides control to patients, as they are the data owners with respect to the asset i.e. EHRs. This allows
patients control over their own records and data users need to request for accessing data. Besides that, the medical
records of patients are unified and stored distributed on Blockchain, so the doctors can retrieve it within seconds in
order to make any medical decision based on the medical record. On the other hand, the medical research institutions
do not need to worry about the quality and quantity of data samples anymore as the EHRs that they are allowed to
access will act as useful datasets to carry out various researches which will benefit the medical industry. A
responsive web application was designed for users to review on their own medical records. In addition, the web
application allows doctors within the inter-hospital network and research institution to query data. A public ledger
was also created to store the sensitive data from medical institutions. The current centralized method for storing
medical records can be replaced by applying Blockchain technology. The patients’ data can be retrieved more
efficiently anywhere and anytime. In future we are planning to develop a mobile application which will be more
convenient for patients to access their own medical information.

REFERENCES

[1] https://hyperledger.github.io/composer/v0.19/introduction/introduction

[2] D. C. Nguyen, P. N. Pathirana, M. Ding and A. Seneviratne, "Blockchain for Secure EHRs Sharing of Mobile Cloud Based E-Health
Systems," in IEEE Access, vol. 7, pp. 66792-66806, 2019, doi: 10.1109/ACCESS.2019.2917555.

[3] Zubaydi HD, Chong Y-W, Ko K, Hanshi SM, Karuppayah S,” A Review on the Role of Blockchain Technology in the Healthcare Domain”,
Electronics. 2019; 8(6):679.

Volume 10 Issue 3 September 2020 17 ISSN:2321-0605

International Journal of Latest Transactions in Engineering And Science (IJLTES)

[4] Rouhani, Sara & Butterworth, Luke & Simmons, Adam & Humphery, Darryl & Deters, Ralph, “MediChainTM: A Secure Decentralized
Medical Data Asset Management System” 10.1109/Cybermatics 2018.2018.00258.

[5S] Yang, Guang & Li, Chunlei & Marstein, Kjell, “A blockchain-based architecture for securing electronic health record systems”,
Concurrency and Computation: Practice and Experience. 10.1002/cpe.5479.

[6] Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G, “Applications of Blockchain Technology in Medicine and
Healthcare”, Challenges and Future Perspectives. Cryptography 2019, 3, 3

[71 Nchinda, N., Cameron, A., Retzepi, K., & Lippman, A, “MedRec: A Network for Personal Information Distribution”, 2019 International
Conference on Computing, Networking and Communications (ICNC), 637-641.

[8] A. Azaria, A. Ekblaw, T. Vieira and A. Lippman, "MedRec: Using Blockchain for Medical Data Access and Permission Management", 2nd
International Conference on Open and Big Data (OBD), Vienna, 2016, pp. 25-30, doi: 10.1109/0BD.2016.11.

[9] Achanti, Akanksha & Behera, Sagarika & Reddy, Raghavendra, “A Secure Scheme for storing data on the cloud using Attribute-Based
Signatures and Blockchain concept”, 13. 110- 116. 10.21172/ijiet.133.17.

Volume 10 Issue 3 September 2020 18 ISSN:2321-0605

