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Abstract-   This paper proposes a combined method based on Maximum Relative Entropy (MrE) for Particle Filtering 
(PF) resampling to build system model knowledge in the form of equality constraints. Firstly, MrE approachallows 
theparticle cloud to be updated by both observed data and constraint moments in a single time step, and impose 
particular forms on the posterior. To speed up the process of finding the desired distribution for each time step, we derive 

and find the relationship between Sampling Importance Resampling (SIR) PF and MrE PF by a new term , called 

additional equality constraint. The numerical method to determine  is introduced by minimized the loss function. This is 

the same way to applied by incorporating Kullback-Leibler Distance (KLD) resamplingPF and MrE PF. Our 
experimental based on target tracking show that this methodobtain about 57% increase in performanceof average error. 
This is also a remarkable result in tracking using PFs. 

 
Keywords – Particle filtering, Maximum Relative Entropy, KLD resampling 

I. INTRODUCTION 

The focus on the target tracking problem given external momentary knowledge of the system described as 
constraints. Target tracking has been historically explored due to its application in numerous domains, e.g. plane 
tracking in military or indoor localization for robots. Traditionally, the problem here is how to pinpoint the target 
position from the given a sequence of observed data obtained through sensors reliably Due to the nature of white 
noise perturbations in the environment and internal system of sensors, it is difficult to yield an certain answer except 
relying on statistical inference to approximate the result. However, that of building the movement model of the 
target and solving analytic equations for the optimal answer is complicated,Particle Filtering (PF) has been 
introduced to give the feasible solutions. 

To extend and make the target tracking more applicable, some obvious constraints are suggested to be 
considered on the model of the moving target. one of example of the constraint is the moving of train on a railway. 
If we know the map of the railway, it is reasonable to express our belief in the form of a probability distribution 
stretched along the railway, focusing on the direction the moving of trainrather than the sides. This example will be 
discussed more details in the simulation session.  

The solution proposed in this paper will consider only equality constraints inwhich the functional form of the 
expected value of a function is a constant. 

There are several studies on the problem of tracking in the presence of constraints. Firstly, Das et. al [1] 
introduced the use of optimal transport theory to solve Bayesian filtering issue of nonlinear equality constrained 
state estimation. The idea is finding transport map between the prior and posterior PDF on measure space, that are 
optimal regarding cost function specified as the sum of Euclidean distances between samples from these 
distributions.Secondly, Giffin et. al [2] proposed a series of Kalman filter with MrE to derived analytic solution such 
as Kalman filter, extended Kalman filter, and the unscented Kalman filter.Thirdly, Xiong et.al [3] proposed 
constrained PF based on KLD by sampling size test and truncating region with two particles handling strategies for 
the non-linear dynamic problems. Amor et.al [4]introduced rejection and projection approaches. Rejection method 
focused on retaining particles that fell within the constrained interval and rejecting all violating constraint region. 
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While, projection one is applied to impose the particle to be within the constraining interval, the obtained particles 
are no longer considered as representative samples of the posterior distribution of the state. Finally, our recent 
research in [5,11] successfully solved the minimum of average number of particles used for KLD PF by finding 
bound error with Support Vector Machine (SVM) algorithm in [11]. We deployed an architectural model to collect 
and store error value of each iteration in database, which is used for online training phase.  

In this paper, a framework is provided to incorporate MrE to the PF algorithm. This contribution launches a new 
method to express constraints on posterior which yields better accuracy than that of traditional methods such as 
Sampling Importance Resampling (SIR) PF [6,9] and KLD PF [3,7,8]. Furthermore, by giving MrE, a new 
application, we have been filled the gap between theory and practice byproviding a compelling background for 
testing new ideas of the method 

System Model, Proposed MrE PF, Experimental and Conclusion are contents presented in this paper, respectively. 

II. SYSTEMMODEL 

Consider the target tracking mathematically in discrete time in [3, 5, 8]which are shown as follows  

     (1) 
 

     (2) 

where f(:) and h(:) are nonlinear functions; xk, zk, wk, and vkare state, measurements, process noise, and measurement 
noise, respectively. The system state,measurement noises and initial state x0 obey non-Gauss distributions 

To test the accuracy of the proposed method, we implement a simulation to compare with the SIR PF[6] and KLD 
PF [3, 7]. The simulation requires tracking a train going on a known 2D railway. Formula for the curve going 
through the middle of the track is simplified in the form of.  

     (3) 
where a and b are the real number. 
 

III. PROPOSED ALGORITHM 

3.1Maximum relative entropy (MrE) 

The principle of maximum Entropy states that the probability distribution which has the highest chance to emerge in 
the context of prior data is the one with largest entropy. This has been proven mathematically and results in 
Maximum Entropy method (MaxEnt) in [10], allowing one to generate a satisfied distribution from the uniform 
background measure given a set of equality constraints. Maximum relative entropy (MrE, also known as ME) is a 
generalized form of MaxEnt, extending the form of the prior to arbitrary [2]. Furthermore, it has been realized that 
MrE also produces every aspect of orthodox Bayesian inference, thus becoming the universal updating method to 
corporate both observed data and moments (constraints) to the distribution. 

3.2 MrE- PF 

In this part, an argument isintroduced to increaseMrE as an universal updated method. For detail discussion, as 
in[10], MrE combines the necessary information of the prior for the update process into a single joint distribution. 
For the PF case, the joint distribution is defined 

     (4) 
where new observations will be put as constraints on z (Bayesian update on data) and moments will be put as 
constraints on x (MaxEnt update on functional constraints of state distribution). In q.(4), P is denoted old and new 
with respect to before and after the update process, respectively 

Kolmogorov second axiom for probability requires the joint distribution satisfy the following condition 
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      (5) 

Observations will be represented as constraints on the family of posterior. The family of posteriors P(z,x) that 
reflects the fact that z is now known to be z' is such that 

    (6) 

where  is the Dirac delta function. This amounts to an infinite number of constraints: there is one constraint  
on P (z, x) for each value of the variable z. 

Moments will be represented as expected value of a function f 's equality to a constant F as 

     (7) 

In a single time step, for simultaneous update under all constraints, the followed variation form with Lagrange 
multipliers must be satisfied 

    (8) 

which yields the posterior as 

   (9) 

where  is determined by 

      (10) 

and  

    (11) 

Comparing to SIR PF in Eq.(9), Pnew(x)and Pold(x) are the posterior and prior, respectively; and is the 

support z' provides for x', and there is a new term accounting for additional equality constraint . It is important 

to note that, MrE for PF has its single moment apply sequentially for each time step. 

In discrete representation of PF, Eq.(11) becomes 

     (12) 

3.3 Numerical method to determine  

Calculating directly  from the implicit eq.(10) is difficult, however we can implement a simple gradient descent 
algorithm to find the approximating solution in reasonable time. The problem is of solving (11) is the same is 
minimizing the loss function as 

     (13) 

where  is Euclidean norm.Noted that, since PF represents the posterior in discrete form, L tends to not give exact 

0. However through experiment, we are usually able to find value  such that ,  giving closest optimum to0. 

Calculating derivative of a function f is done through numerical differentiation method  

     (14) 

Value  will be determined through the iteration formula with step size  

      (15)  
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3.4 Kullback–Leibler Distance (KLD) resampling 

To determine the sampling size through KLD will be introduced [3, 8]. The KLD is to measure the difference 
between two probability distributions p and q as 

     (16) 

The maximum likelihood estimation p can be specified , and logarithm of the likelihood ratio is given 
by 

,      (17) 

where then we have 

      (18) 
Letp( means the probability that the KLD between the true distribution and the maximum likelihood 

estimation based on samples is less or equal to . The derivation eq.(18), we have 

p(  =p(2log )=p( )   (19) 

Let us define Nre is the required number of samples can be determined as  and the mean particle 

used criterion is collected as follows 

    (20) 

where  is the upper quantile at (1- ) of the standard normal distribution. 

IV. EXPERIMENTS AND RESULTS 

The eq.(3) is used to simulate the train setting up parameters fortracked through 20 steps, with each time step ∆k 
= 1. In a span of a time step, the train can move with hidden velocity vk, results in a stochastic coordinate state 

where x-axis component  and y-axis component .  

In this simulation,values a and b are assigned to 0.25 and 1.5, respectively. Velocity is setto 1 for all k k; vk = 1 
and standard deviation for the transition normaldistributions is set to σ = 0.1. There will be 4 sensors with the error 
rate ofe ∼ N (0, 0.1). The number of particles is initially set to 800. 

Table 1. Generate the covariance matrix Cov 

Algorithm 1: Generate covariance matrix Cov. Calculate rate of change r through numerical method, then 
determine angle  and transformation components U,  

Input: mk 

-Calculate  

-Calculate   

-Calculate  

-Calculate  

-Calculate  

Output:Cov 

The moment constraint on the posterior of each time step is defined as 

   (21) 
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where the state estimate of the particles after transition mkis calculated as 

       (22) 

The covariance matrix Cov is presented in Table 1.  

The moment constraint forces the posterior to take the form of a multivariate normal distribution, with its mean 
at the estimated state after transition and covariance matrix spreading along the gradient vector of Eq.(3).The 
simulation is conducted through 4 iterations of 500 runs which results in total 2000 simulations for each algorithm. 
Error of each time step is the Euclidean distance between the estimated state and the train’s true position. The 
average result at each time step is shown in the chart of Figure 1. 

 

Figure 1.  The performance of the average error vs step for all methods 

Figure 1 shows the performance of the average error vs. step for SIR PF, KLD PF without MrE and our 
suggestions such as SIR PF with MrEand KLD PF with MrE.  In general, our proposed ideas show an improvement 
in average error. SIR PF and KLD PF with MrE both achieve a low error and confirmed by the simulations. For 
example, the gap of average error of KLD PF with MrE and without MrE (KLD PF) is about 0.2m for the whole 
step. Moreover, the gap of average error of SIR PF with MrE and SIR PF without MrE is about 0.4 m (at step 1)  to 
0.6 m (at step 9).Numerical comparison of four algorithms is in the Table 2. 

Table -2 Average error and runtime for all methods 
 Average error [m] Runtime [ms] 

SIR PF [6,9] 0.493 62.4 

KLD PF[3,7,8] 0.461 57.6 

SIR PF with MrE (Proposal 2) 0.111 72.5 

KLD PF with MrE (Proposal 1) 0.198 61.9 

 

Table 2verifies that SIR PF with MrE dominates about the performance of the accuracy location (the smallest 
average error). However, the runtime of this technique needs about 10ms more comparing to that ofSIR PF. This 
time is used to find β in MrE algorithm. Furthermore, while KLDPF with MrE has higher error than that of SIR PF 
with MrE, it proves to has smaller runtime. It obtains about 57% increase in performance. As a result, KLD is a 
feature allows us to leverage between accuracy and runtime. 
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IV.CONCLUSION 

 
In this paper, we propose the MrE for SIR PF and KLD PF methods to improve the accuracy location when 
compared to traditional methods for tracking problem. Our algorithm is built on the combinations of Maximum 
relative entropy (MrE), MrE – PF, numerical method to determine β for   KLD or SIR resampling. The experiment 
is run by 4 sensors with the error rate of e ∼ N (0, 0.1) and 800 number of particles at the initialization step. The 
algorithms give improved results on average error deceases from 0.493 to 0.111 for SIR PFwithout and with MrE, 
respectively.Our future work, this technique will be extended (e.g. implicit transition model as constraints) and 
applied to our architecture diagram in wireless sensor network. 
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