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Abstract- We introduced the concept of the generalized limit (or, 𝜀o-limit) of multi-valued sequences in [2]. The concept of 

the generalized limit is an extension of the concept of the usual limit of single-valued sequence. This concept of the 

generalized limit is also an extension of the concept of the approximation. In this paper, we introduce a concept of the 

generalized completeness using these concepts of the generalized limits and study some properties relating to these 

concepts. 
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I. INTRODUCTION 

The concept of the generalized limit is an extension of the concept of the usual limit of single-valued sequence and 

function.Andthe concept of the generalized limit isan extension of the concept of the approximation. We need 

sometimes the limits of multi-valued sequences and functions and the approximation of the unspecified number. In 

this section, we study briefly those concepts of the generalize limit and some results which we need later. 

Definition 1.1. Let {xn} be a vector-valued and multi-valued infinite sequence of elements of Rm. And let  be 

any, but fixed, non-negative real number. If a set S satisfies the following condition, we call that the𝜀0 generalized 

limit (or 𝜀0-limit) of {xn} as n goes to ∞ is S, and we denote it by 𝜀0-limn→∞xn= S:S is the set of all the vectorsα 

∈Rm satisfying the condition 

 
If the set S in the definition above is not empty we say that {xn} is an𝜀0-convergent sequence or 𝜀0-converges to S. 

We also define thatany member α∈S is an approximate value of the generalized limit of {xn} with the limit of the 

error𝜀0. Then we can regard α ∈S as the approximate value of the limit of {xn} whether {xn} converges in the 

usual sense or not. 

Definition 1.2. For a multi-valued infinite sequence {xn} of vectors in Rm, we call that {xn} is ultimately bounded 

if and only if there exist real numbers K and M such that (∀n∈N)n≥ K,∀xn⇒||xn||≤ M. 

Lemma 1.3. (Representation) Let {xn} be a vector-valued and multi-valued infinite sequence. And let be a 

non-negative real number. Suppose that {xn} is ultimately bounded. Ifhave 𝜀0-limn→∞xn= Sthen S isa convex and 

compact subset of Rm such that S= . Here  denotes the closed 

ball and 

SSL = SSL({xn}) = {α∈Rm|∃{ } ≤ {xn} s.t. } 

and{ } ≤ {xn} means that { } is a single-valued subsequence of {xn}. 

Proof. (⊆) Let any elements β ∈S and α ∈SSL begiven. Then 

 

Since α ∈SSL, there exists a single-valued and convergent subsequence{ } such that .Thus we 

have 

 
.If we take a natural number K = max{K1,K2} then we have 

. 

Since was arbitrary, we have || || . That is, . Since α ∈SSL was arbitrary, we 

have . Since β ∈S was also arbitrary, we haveS . ( ) It isobvious 
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thatS Rm since {xn} is ultimately bounded. In order to prove the opposite inclusion, let β S be any member of 

Rm − S ∅. Then we have 

. 

Since { } is ultimately bounded, { } is a bounded sequence in Rm.Hence there is a convergent subsequence 

{ } of {x} by the BolzanoWeierstrass theorem. Thus we may assume that = α0 for some α0 ∈Rm. 

Then we have, for such an , 

||< . 

Hence we have 

. 

Since , this implies that . Since α0 ∈SSL, this implies that .Thus we 

have . On the other hand, since S is the intersection of the closed balls which are 

bounded, closed and convex, S is compact and convex inRm.Finally, if S = ∅ then S is clearly convex and compact, 

and   

Corollary 1.4. Let {xn} be a multi-valued infinite sequence of vectors in Rm and SSL = {a} for some vector a ∈Rm. 

Then we have𝜀0-limn→∞xn= for all . 

Proof. Since the sub-sequential limit a of {xn} is unique, this corollary follows from the above lemma 1.3.  

Lemma 1.5. Let {xn} be a vector-valued and multi-valued infinite sequence and . Suppose that {xn} is an 

ultimately bounded sequence. Then the set SSL of all the single-valued sub-sequential limits of {xn} is a non-empty 

and compact subset of Rm. 

Proof. Since the sequence {xn} is ultimately bounded, the set SSL is clearly non-empty and bounded. In order to 

prove that SSL is aclosed subset of Rm, let any element α ∈SSL be given. If α ∈SSL we are done. If α SSL then α 

must be an accumulation point of the set SSL. Hence there is a single-valued sequence {αn} ⊆SSL such that 

limn→∞αn = α. Since α1 ∈SSL, there is one value, say , of the multi-valued term in {xn} such that 

. And since α2 ∈SSL, there is one value, say , of the multi-valued term in {xn} such 

that  and n2 > n1. By applying those methods, we can inductively choose a single-valued 

subsequence { } of {xn} such that − αk for all natural number k ∈N. Since 

|| , if we take the limit on both sides we have limk→∞ = α. Thus we have α 

∈SSL which completes the proof.  

 

II. THE GENERALIZED COMPLETENESS 

In this section, we define the concept of the generalized completeness of a set. Note that denotes some fixed non-

negative real number. 

Definition 2.1. Let {xn} be a multi-valued sequence in Rm. We define that {xn} is an -Cauchy sequence if and 

only if 

 

Definition 2.2. Let Sbe any non-empty subset of Rm. Then we define thatS is -complete in Rm if and only if 𝜀0-

limn→∞xn  forany -Cauchysequence {xn} in S. 

Lemma 2.3. Let {xn} be an -Cauchy sequence in Rm. If α ∈SSL then α ∈𝜀0-limn→∞xn. 

Proof. Let {xn} be an -Cauchy sequence in Rm. Then we have 
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since . Since α ∈SSL, there is a single-valued and convergent subsequence { } of {xn} such 

that . Now since nk≥ k, we have, by replacing xnto , 

. 

For each fixed term number m and each value of xm, by taking the limit as kgoes to ∞, we have 

. 

Hence α ∈𝜀0-limn→∞xn.  

Corollary 2.4. Let {xn} be an -Cauchy sequence in Rm. If we denote by hull(SSL) the convex hull of SSL then 

hull(SSL) ∅and 

hull(SSL) ⊆𝜀0-limn→∞xn= . 

Proof. This follows from lemmas 1.3, 2.3 and the convex property of the -limit.  

Lemma 2.5. Let {xn} be an -Cauchy sequence in Rm. Then the diameter of SSL is less than or equal to . 

Proof. Letα,β ∈SSL be any two elements. Since {xn} is an -Cauchy sequence in Rm, we have 

 

since . And since α,β ∈SSL, there are two single-valued and convergent subsequences {xmk} and 

{xnk} of {xn} such that and . Since mk,nk≥ k, we have 

.. 

By taking the limit as kgoes to ∞, we have 

. 

Since  was arbitrary, this implies that . Hence diam(SSL) .  

Proposition 2.6. Let {xn} be an -Cauchy sequence in Rm. Then {xn} is ultimately bounded. 

Proof. Since {xn} is an -Cauchy sequence, we have 

. 

Choosing one value xKof xK, we have 

. 

Hence we have 

. 

Thus {xn} is ultimately bounded.  

Proposition 2.7. Let {xn} be an Cauchy sequence in Rm. If and diamSSL({xn})= d then there exists a 

vector γ ∈ Rm and a positive real number such that B(γ,r)∩ hull(SSL) ∅ and B(γ,r)⊆𝜀0-

limn→∞xn.. 

Proof. Note that  since the diameter of SSL is less than or equal to by lemma 2.5. If d = 0 then SSL = {γ} is 

a singleton for some γ ∈Rm.Hencewe have{γ} ⊆B(γ,0) = 𝜀0-limn→∞xnby the corollary 1.4. Suppose that d >0. 

Then there are two distinct elements x0,y0 ∈SSL such that ||x0 − y0||= d since SSL is compact by the lemma 1.5. 

By an appropriate rotation and translation of the axes and the origin in the usual Euclidean coordinate system of Rm, 

we may assume that ,  and (0,0,··· ,0). Then we must have 

SSL ⊆B(x0,d) ∩ B(y0,d) 

sincediamSSL({xn}) = d. But the equation of the most far boundary from the origin of the intersection of the 

boundaries ∂B(x0,d) and∂B(y0,d) is given by 

. 

That is, we have 
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. 

Thus the distance between the origin and the boundary of the intersection B(x0,d) ∩ B(y0,d) satisfies that 

. 

Hence we have . Then we also have  since  is convex. Since is a ballwhose 

boundary is not a convex set, this implies that if hull(SSL) is not a singleton. In fact,hull(SSL) is not 

a singleton since the diameter of SSL is positive.Now we have proved that  

 and   

Thus we have 

𝜀0-limn→∞xn.. 

By taking and , we have the second result in this proposition. And we 

have , ). Thus we have  for all , ). This 

givesthe first result in this proposition which completes the proof.  

Theorem 2.8. If D ⊆Rm satisfies then  is -complete. 

Proof. At first, assume that  and let any 0-Cauchy sequence {xn} be given. Then any single-valued 

subsequence of {xn} is a Cauchy sequence in the usual sense. Since Rm is complete in the usual sense and {xn} is a 

0-Cauchy sequence, the set of all the sub-sequential limits SSL({xn}) must be a singleton. Thus {xn} is a 0-

convergent sequence. Suppose that . Let any -Cauchy sequence {xn} in Rm be given. If we set diam(SSL) 

= d, then, by the proposition above, we have 

⊆𝜀0-limn→∞xn. 

for some vector γ ∈Rm. Since  by lemma 2.5, is a subset of . Thus we have 

⊆𝜀0-limn→∞xn. 

But if then we have 

 

which is a contradiction. Thus we have D ∩ 𝜀0-limn→∞xn ∅. Therefore,  is -complete.  

Note that the set  is -complete for any non-negative real number 0 by the proposition above 

since And if  then any dense subset D of Rm in the usual sense is also -

complete since In particular, bothQmand Rm − Qmare -complete. But neither 

Qmnor Rm − Qmare 0-complete as we know. 

Theorem 2.9. Any closed subset D of Rm is -complete for all . 

Proof. Suppose that D is a closed subset of Rm and let any -Cauchy sequence {xn} ⊆D be given. By corollary 

2.4, we have 

SSL ⊆𝜀0-limn→∞xn. 

But the set SSL({xn}) ∅ since {xn} is ultimately bounded by proposition 2.6. Since SSL ⊆ , this implies that 

∅ SSL ⊆ ∩ 𝜀0-limn→∞xn . 

But we have =Dsince D is closed. Thus D is -complete for all .  
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Corollary 2.10. Let D ∅be a subset of Rm and a real number be given. IfD is -complete then  is -

complete. But the converse is not true in general. 

Proof. By the theorem just above, it is clear that  is -complete. Now consider the subset D of R given by 

 

Then D = D ∪ {0,1} is 1-complete since it is closed. But if we choose a sequence {xn} such that  

and  for each n ∈N then SSL({xn}) = {0,1}. Hence we have 

𝜀0-limn→∞xn= = [0,1]. 

Since D ∩ [0,1] = ∅, D is not 1-complete.  

Theorem 2.11. Any convex subsetD of Rm is -complete for all positive real number . 

Proof. Suppose that D is a convex subset of Rm. Since is -complete, we may assume that D ∅. And let any -

Cauchy sequence{xn} ⊆D be given. Since {xn} is also an -Cauchy sequence in D which is -complete by 

theorem 2.9 and D is also convex, we have 

∅ hull(SSL) ⊆D ∩𝜀0-limn→∞xn . 

But if D ∩hull(SSL({xn})) ∅ then we are done since the intersectionofDand the -limit of {xn} is not an empty 

set. Now suppose that D∩hull(SSL({xn})) = ∅. Then hull(SSL) is a subset of the derived set , the set of all the 

accumulation points of D. That is, hull(SSL) ⊆ . Hence hull(SSL) is a subset of the boundary ∂D of D. By 

proposition 2.7, there are some vector γ and some real number r >0 such that hull(SSL) ∩ B(γ,r) ∅ and 

B(γ,r) ⊆𝜀0-limn→∞xn= . 

Now choose a point β ∈hull(SSL) ∩ B(γ,r) ∅. Then β ∈ . Hence there is an element β0 ∈D such that β0 

∈B(γ,r) since B(γ,r) is an open set containing the accumulation point β. Thus β0 ∈D ∩ 𝜀0-limn→∞xnwhich 

completes the proof.  

Note that the convex subset of Rm is not 0-complete in general. 

Proposition 2.12. (1) The union of the -complete subsets does not need to be -complete. (2) The intersection of 

the -complete subsets does not need to be -complete. 

Proof. (1) Let and .In order to prove that D1 is 1-complete, let any 1-

Cauchy sequence {xn} ⊆D1 be given. Then SSL({xn}) ∅ and SSL ⊆D1∪{0}. Hence we have 

[−1,0] ⊆ ⊆ =1-limn→∞xn. 

Thus the intersection of D1 and the 1-limit of {xn} is not an empty set. HenceD1 is 1-complete. Since the diameter 

of D2 is 1, we can prove by the same method that D2 is also 1-complete. But the union 

 

is not 1-complete as in the proof of corollary 2.10. (2) Let and 

. In order toprove that D1 is 1-complete, let any 1-Cauchy sequence {xn} ⊆D1 be 

given. Since the diameter of SSL satisfies the inequality diam(SSL) ≤ 1, the following three cases occur. 

 

 

. 

(i) If SSL = {0,1} then D1 ∩ 1 − limxn= D1 ∩ [0,1] = {0} ∅. (ii) If then D1 ∩ 1 − limxn= 

{ ,0:n ∈N} ∅.(iii) If  then D1 ∩ 1 − limxn= { : n ∈N} ∅. Therefore, D1 is 1-
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complete. On the other hand, we can prove by the same method that D2 is also 1-complete. But the intersection 

 
is not 1-complete as in the proof of (1).  

Definition 2.13. Let V = {v1,v2,··· ,vm+1} be a subset of Rm. We define that V is an m-dimensional -tetrahedral 

vertex if and only if || ||  for all i j.And we call the set (resp. )  

an m-dimensional -tetrahedral open(resp. closed)ball and denote by (resp. . 

Proposition 2.14. Let  be a positive real number and a subsetD of  be -complete. Then  

for each m-dimensional -tetrahedral vertex V such that V ⊆ . 

Proof. Suppose that  for some m-dimensional -tetrahedral vertex V such that V ⊆ . Let 

V = {v1,v2,··· ,vm+1}. Then, for each 1 ≤ k ≤ m+1, there is a sequence  in D such that = vk. For 

each natural number p ∈N, there are non-negativeintegers u,r∈N ∪ {0} such that p = (m + 1)u + r and 0 ≤ r < m + 

1.Now let’s define the sequence {xp} as follows. 

xp= v(r+1)p, p = (m + 1)u + r, u,r ∈N∪{0}, 0 ≤ r < m + 1 

for each natural number p∈N. Since for each 1 ≤k ≤ m + 1, we have 

 

In order to show that {xp} is an -Cauchy sequence, for each positive real number , let any natural number 

p,q ≥ K be given. Then, by the Euclidean division theorem, we have 

∃u,r∈N ∪ {0} s.t. p = (m + 1)u + r and 0 ≤ r < m + 1 

and 

∃t,s∈N ∪ {0} s.t. q = (m + 1)t + s and 0 ≤ s < m + 1. 

Hence we have 

 

 

 

 

Thus {xp} is an -Cauchy sequence in D. And it is obvious that SSL({xp}) = V . Hence we have 

 

Since by assumption, this implies that {xp} is not an -convergent sequence in D. ThusD is not 

-complete. This contradiction completes the proof.  

Proposition 2.15. Let  be a positive real number. If a subsetD of Rm is not -complete then there is an -

Cauchy sequence {xp} such that , for some vector γ ∈Rm and some positive 

real number r >0. Moreover, SSL satisfies the following condition. 

∀α ∈SSL,∃β ∈SSL({xp}) s.t.|| ||= . 

Proof. Suppose that D is not -complete. Then there exists an -Cauchy sequence {xp} in D such that 

D∩  = ∅. If SSL∩D ∅ then we have 

∅ D ∩ SSL ⊆D ∩ {  } ⊆D ∩  

This is a contradiction. Since SSL({xp}) ⊆D, this contradiction implies that SSL({xp}) ⊆ . But there are 

elements γ ∈Rm and r >0 by proposition 2.7 such that 
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hull(SSL) ∩ B(γ,r) ∅ and ⊆ . 

And if SSL ∩ B(γ,r) ∅ then there is an element α0 ∈SSL ⊆ such that α0 ∈B(γ,r). Since is an 

accumulation point of D and B(γ,r) is an open set, there is an element x ∈D such that x ∈B(γ,r).Hence we 

have  which is a contradiction. Thus we have SSL∩B(γ,r) = ∅. Moreover, suppose that 

there is an element α0 ∈SSL({xp}) such that || ||  for all β ∈SSL({xp}). Thenwe have 

 
since the set SSL({xp}) is compact. Then we have 

 

Since α0 ∈ and  is an open set containing α0, we have . This is a 

contradiction as the above. Thus we have 

∀α ∈SSL,∃β ∈SSL({xp}) s.t.|| ||= . 

Since the diameter of SSL is not greater than , this implies that .  

Theorem 2.16Let be a positive real number and D be a subset of Rm. Then D is not -complete if and only if 

there is a compact subset S of such that and . 

Proof. ( ) Suppose that D is not -complete. Then there is an -Cauchy sequence {xp} such that 

D∩  = ∅. By the propositionjust above, we have SSL({xp}) ⊆  

and .Now put S = SSL({xp}). Then S is compact by lemma 1.3. And  and S 

⊆ by the proposition just above. Moreover, 

 

since =  (⇐) Suppose that there is a compact subset S of such that 

 and . We can write as S = {sj:j ∈J} for some index set J. Since S ⊆ , 

for each j ∈J, there is a single-valued sequence  in D such that ||  for each p∈N. In order to 

prove that D is not -complete, let’s choose a multi-valued sequence {xp} so that xp= { : j ∈J} for each p ∈N. 

In order to show that {xp} is an -Cauchy sequence, let any positive real number be given. Choosing a 

natural number K ∈N so large that , we have, since || for all j,k∈J, 

 

 

. 

Therefore, the sequence {xp} is an -Cauchy sequence in D. Since the limit of the sub-sequential limits is also a 

sub-sequential limit, we haveSSL({xp}) = . But = S since S is closed. Thus SSL({xp}) = S.Finally, we have 

 
by the assumption. Consequently, D is not 0-complete.  

Definition 2.17. Let D be a subset of Rm and f :D → Rn be a multi-valued function. We define thatf is -uniformly 

continuous onD if and only if we have 

|| ||<  

Proposition 2.18. (Criterion) Let f :D → Rn be a multi-valued function defined on a bounded subset D of Rm. Then 
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f is -uniformly continuous on D if and only if {f(xp)} is an -Cauchy sequence in Rn for every 0-Cauchy 

sequence {xp} on D. 

Proof. ( ) Suppose thatf is -uniformly continuous on D and any0-Cauchy sequence {xn} on D be given. Then we 

have 

 || ||<  

Since {xn} is a 0-Cauchy sequence, we have 

∃K∈N,s.t.(∀p,q∈N)p,q≥ K,∀x(p),∀x(q) ⇒||x(p) − x(q)||< δ. 

Hence we have 

⇒|| ||<  

Thus {f(xp)} is an -Cauchy sequence in Rn. (⇐) Suppose that f is not -uniformly continuous on D. Then we 

have 

 s.t. {∀δ >0,∃xδ,yδ ∈D,∃f(xδ),f(yδ) ∈Rn . 

 Choosing  for each natural number p ∈N, we have 

 ∃{xp},{yp} ⊆D ∧∃{f(xp)},{f(yp)} ⊆Rnsuch that  

Since {xp} and {yp} are bounded sequences in a bounded subset D and the closure D is compact, we may assume 

that  forsome α ∈D by choosing the single-valued and convergent subsequences. 

Now define a sequence {zp} by z2p−1 = xpand z2p = ypfor each natural number p ∈N. Then  and 

{zp} is a 0-Cauchy sequence in D. But we have 

 

for all p ∈N. Hence {f(zp)} is not an -Cauchy sequence. This contradiction implies the -uniform continuity of 

f on D.  

Theorem 2.19. Let f :D→ Rn be a multi-valued function defined on a 0- complete subset D of Rm. If f is -

uniformly continuous on D then, for every 0-Cauchy sequence {xp} on D, there is an element α ∈D such 

that  is -convergent to f(α) ∈f(D). 

Proof. Let any 0-Cauchy sequence {xp} on D be given. Since f(x) is -uniformly continuous on D, we have 

 s.t. (∀x,y∈D)||x –y||<δ,∀f(x),∀f(y)  

But we have 0 − limxp= {α} for some α ∈D since D is 0-complete.Hence we have 

∃K ∈N s.t.∀p ≥ K,∀xp⇒||xp–α||< δ. 

Hence we have 

s.t.∀p ≥ K,∀f(xp),∀f(α)⇒||f( || . 

Thus we have f(α) ∈ for all values of f(α). Since f(α) ∈f(D) for all values of f(α), the sequence 

{f(xp)} is an -convergent sequence of f(D).  
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