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Abstract- We introduced the concept of the generalized limit (or, go-limit) of multi-valued sequences in [2]. The concept of
the generalized limit is an extension of the concept of the usual limit of single-valued sequence. This concept of the
generalized limit is also an extension of the concept of the approximation. In this paper, we introduce a concept of the
generalized completeness using these concepts of the generalized limits and study some properties relating to these
concepts.
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I. INTRODUCTION
The concept of the generalized limit is an extension of the concept of the usual limit of single-valued sequence and
function.Andthe concept of the generalized limit isan extension of the concept of the approximation. We need
sometimes the limits of multi-valued sequences and functions and the approximation of the unspecified number. In
this section, we study briefly those concepts of the generalize limit and some results which we need later.

En = 00

Definition 1.1. Let {xn} be a vector-valued and multi-valued infinite sequence of elements of Rm. And let T be
any, but fixed, non-negative real number. If a set S satisfies the following condition, we call that the0 generalized
limit (or €0-limit) of {xn} as n goes to « is S, and we denote it by €0-limn—ooxn= S:S is the set of all the vectorsa
€Rm satisfying the condition
verenIKeNstlvneNnz= Kyl =|lx,—all ==
If the set S in the definition above is not empty we say that {xn} is ane0-convergent sequence or 0-converges to S.

We also define thatany member o €S is an approximate value of the generalized limit of {xn} with the limit of the

errore0. Then we can regard o €S as the approximate value of the limit of {xn} whether {xn} converges in the

usual sense or not.
Definition 1.2. For a multi-valued infinite sequence {xn} of vectors in Rm, we call that {xn} is ultimately bounded

if and only if there exist real numbers K and M such that (VYneN)n> K,¥xn=||xn||< M.
Lemma 1.3. (Representation) Let {xn} be a vector-valued and multi-valued infinite sequence. And let€e = Ope a
non-negative real number. Suppose that {xn} is ultimately bounded. Ifhave €0-limn—ooxn= Sthen S isa convex and

compact subset of Rm such that S= I {(Bla.s):a € SSL} | pere Blazs)  denotes the closed
ball Bla,e,) ={xeR™:|lx—al| ¢ Yand

SSL = SSL({xn}) = {acRm3*"4} < xn s e = 6

and{x”ic} < {xn} means that {x”ic} is a single-valued subsequence of {xn}.
Proof. (€) Let any elements B €S and a €SSL begiven. Then
¥e > 3K, € Ns.t. (vn e NJn = K, (vxy) = |l — 8l < & s
Since o ESSL, there exists a single-valued and convergent subsequence{*™} such that “™==%m = & Thys we
have

£— £
Ve > €, 3K, € Ns.t (vk e Nk 2 K; = ||x,, —af| < ——

If we take a natural number K = max{K1,K2} then we have
lp—all = ||I3_x|:|p;+x|:|k: - '5‘|| = |||3 _xu,.;” + ||x|:|K - '5‘|| <&+ __:_u +—"= €

) E > Ep ) —a = g ) EEE{EI,ED:] ) )
Since was arbitrary, we have || I . That is, . Since o €SSL was arbitrary, we

Ben{Bla ) ae S50} _ n{Bla.gp):xeSSL} 2
have . Since B €S was also arbitrary, we haveS< . () It isobvious
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#= g

thatS  Rm since {xn} is ultimately bounded. In order to prove the opposite inclusion, let B S be any member of
Rm—-S 2. Then we have

Jey = gy st (Whk E N, 3n € N, 3x, st

lxn, =B8] = )

Since {x”'u} is ultimately bounded, {x”'u} is a bounded sequence in Rm.Hence there is a convergent subsequence

My =P, _

T li
{ ™} of {x} by the BolzanoWeierstrass theorem. Thus we may assume that a0 for some 00 ERm.

Then we have, for such an €1 = o,
FJEeNszt vp=2K= ||xnkp—

e
Prd ar M|
“I< =

Hence we have

||B _'ID|| = ||B_xUkK +xﬂka—_ txl!'|

£-gy  E+E
E—fp _ E+gg

= Ey —

= ||B_xnkx| xnk;—r —EID|

£y+Ep = _ —_
Since z - °°, this implies thatP= B eo. 2] Since a0 €SSL, this implies thatB= N {Bla &): @ € S5L Thys we
have 5 = Naessi Bla25), On the other hand, since S is the intersection of the closed balls (& €o)which are
bounded, closed and convex, S is compact and convex inRm.Finally, if S = @ then S is clearly convex and compact,
andNeess: Blau5g) €5 = 0. O

Corollary 1.4. Let {xn} be a multi-valued infinite sequence of vectors in Rm and SSL = {a} for some vector a ERm.

Then we havee0-limn—woxn= B(& £)for allfe = 0

Proof. Since the sub-sequential limit a of {xn} is unique, this corollary follows from the above lemma 1.3. [
Lemma 1.5. Let {xn} be a vector-valued and multi-valued infinite sequence andéo = 0. Suppose that {xn} is an
ultimately bounded sequence. Then the set SSL of all the single-valued sub-sequential limits of {xn} is a non-empty
and compact subset of Rm.

Proof. Since the sequence {xn} is ultimately bounded, the set SSL is clearly non-empty and bounded. In order to

prove that SSL is aclosed subset of Rm, let any element o €SSL be given. If o €SSL we are done. If a=SSL then o
must be an accumulation point of the set SSL. Hence there is a single-valued sequence {an} =SSL such that

limn—ooan = a. Since al €SSL, there is one value, say *n1 of the multi-valued term *™in {xn} such that

#n, — @l < 1 And since a2 €SSL, there is one value, say *n2 of the multi-valued term *mzin {xn} such

Ty — Oz =
a2~ el

[N

and n2 > nl. By applying those methods, we can inductively choose a single-valued

1
== .
subsequence { Frg } of {xn} such that lI%n, _ ak I k for all natural number k &N. Since
e~ @l = 1, — @l +1le = @l g e take the Timit on both sides we have limk—os* 5= a. Thus we have o

& SSL which completes the proof. []

Il. THE GENERALIZED COMPLETENESS

In this section, we define the concept of the®egeneralized completeness of a set. Note that*zdenotes some fixed non-
negative real number.

Definition 2.1. Let {xn} be a multi-valued sequence in Rm. We define that {xn} is an 2-Cauchy sequence if and
only if

Ve > €, 3K € Ns.t.(vmndm.n = K. ¥x Vi, = |lx, — x,]| < e

Definition 2.2. Let She any non-empty subset of Rm. Then we define thatS is*z-complete in Rm if and only if £0-
ns=o forany Zo-Cauchysequence {xn}in S.

Lemma 2.3. Let {xn} be an #2-Cauchy sequence in Rm. If a €SSL then a & £0-limn—ooxn.

limn—ocoxn

Proof. Let {xn} be an Z2-Cauchy sequence in Rm. Then we have

E—¢
Ve g, 3K e Ns.t.(vmnlmn = K. ¥x,, Wi, = |, — x| < 5 + d
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£1—Ep
= . . .
T3 . Since « €SSL, there is a single-valued and convergent subsequence {x”ic} of {xn} such
Hmno= ¥, = @ Now since nk k, we have, by replacing xnto *™,

E—E,

. £
since™®

that
verenIKNeNs.t(vmkmk = K.vx, = ||)v:,:n —xﬂi:” < £, +

For each fixed term number m and each value of xm, by taking the limit as kgoes to o, we have

Ve 3K e Ns.t.(vmlm = K.vx,, = ||xm—|:t|| = £D+E__j:ﬂ::£

Hence a € £0-limn—ooxn.[]

Corollary 2.4. Let {xn} be an Zz-Cauchy sequence in Rm. If we denote by hull(SSL) the convex hull of SSL then
hull(SSL)*#and

hull(SSL) QeO-limnwan:ﬂﬁESSLE{a* £0),

Proof. This follows from lemmas 1.3, 2.3 and the convex property of the Fo-limit. O

Lemma 2.5. Let {xn} be an #r-Cauchy sequence in Rm. Then the diameter of SSL is less than or equal to®e.

Proof. Leta,p €SSL be any two elements. Since {xn} is an Zr-Cauchy sequence in Rm, we have
£ — Ep
2

Ve = g, 3K € Ns.t. (Wmondmon = K, ¥Wx g W, = ||xm —xﬂ||<: £y +

£4—E€p
T ® 0 And since a,p ESSL, there are two single-valued and convergent subsequences {xmk} and

{xnk} of {xn} such that "Pm==Fm = Fang Mo %0, = B gince mi nke k, we have
verenIKeNstvklkzK = ||xmk —.rﬂi:” = £y + E:E"

. £
since™®

By taking the limit as kgoes to o, we have

la—Bll s e+ 2= <

Since £ = o was arbitrary, this implies that!!® = Bl = 22 Hence diam(ssL)= 2. O

Proposition 2.6. Let {xn} be an ®e-Cauchy sequence in Rm. Then {xn} is ultimately bounded.

Proof. Since {xn} isan ®z-Cauchy sequence, we have

IK e Ns.t.(vmmdmn = K. Vx, e, = |lx, —x,0| < e +1

Choosing one value xKof xK, we have

IKeNs.t.(vmdm = K, vz, = |lxy, —xgl| <, +1

Hence we have

IK e Ns.t.(vmdm = K.vxp = |lxgl| <6 +||xgl| + 1

Thus {xn} is ultimately bounded. [

Proposition 2.7. Let {xn} be an®> ~Cauchy sequence in Rm. If o = 0 and diamSSL({xn})= d then there exists a

rz (g — —d) = 0

vector y € Rm and a positive real number such that B(y,r)N hull(SSL) *2 and B(y,r)=£0-

limn—ooxn..
Proof. Note that? = o since the diameter of SSL is less than or equal to “zby lemma 2.5. If d = 0 then SSL = {y} is
a singleton for some y €Rm.Hencewe have{y} =B(y,0) = €0-limn—coxnby the corollary 1.4. Suppose that d >0.

Then there are two distinct elements x0,y0 €SSL such that ||x0 — y0||= d since SSL is compact by the lemma 1.5.
By an appropriate rotation and translation of the axes and the origin in the usual Euclidean coordinate system of Rm,

d d Xg+y
= —__.U_."'_.U o = __.U,."'_.U Z }I]:
0= e j, Yo {2 ) and = (0,0,--- ,0). Then we must have

we may assume that -
SSL =B(x0,d) N B(y0,d)

sincediamSSL({xn}) = d. But the equation of the most far boundary from the origin of the intersection of the
boundaries 6B(x0,d) andoB(y0,d) is given by

(2 -5 +adtmtah=a?=(x +5) +2d s 42l

That is, we have
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% =0 xF+-+xl =id:
Thus the distance between the origin and the boundary of the intersection B(x0,d) N B(y0,d) satisfies that
dist(0,8[B(xo.d) N Blyp.d)]) ==d

()] nai(ss) = B (0, Za) 80, a4

. (0 2a) . . 80, Zq),
since is convex. Since is a ballwhose
if hull(SSL) is not a singleton. In fact,hull(SSL) is not

. Then we also have
hull(55L) N B(0, %dj =0

Hence we have

boundary is not a convex set, this implies that

d
a singleton since the diameter of SSL is positive.Now we have proved that
ssL = B (2, £g) and mwns (2, Bg) =g,

Thus we have

E(m Ep —%d) =N

) “Eﬁiw.\_,—idjg{a’fnj € MNyesst B{HJED:] =

£0-limn—ooxn..
g +Y 2
— u_}u r=g, — “Td

By taking and ", we have the second result in this proposition. And we

- +¥g 2 Xg+¥g 32

2% NB(r.r) CBEEE Zd 2% N B(nr) SB(wz) aE€B(TT T4
have , ). Thus we have for all , ). This
givesthe first result in this proposition which completes the proof. [

Upeo BB, (1 - T)20) = R

m
Theorem 2.8. If D =Rm satisfies then? is¥o-complete.

Proof. At first, assume that®c = 0 and let any 0-Cauchy sequence {xn} be given. Then any single-valued
subsequence of {xn} is a Cauchy sequence in the usual sense. Since Rm is complete in the usual sense and {xn} is a
0-Cauchy sequence, the set of all the sub-sequential limits SSL({xn}) must be a singleton. Thus {xn} is a 0-

convergent sequence. Suppose that®c = 0 Let any Zo-Cauchy sequence {xn} in Rm be given. If we set diam(SSL)
=d, then, by the proposition above, we have

B(y.20— 5 4) C 0-limn—ooxn.

Bly.l1 _5 En |, B o _ Y2
for some vector y ERm. Sinced = o by lemma 2.5, (} ( : ) D)IS a subset ofB{j’ fo T dj. Thus we have
Bly. (1 = E
{} { :) I:')Q‘EO-Iimn—moxn.
DnB(y.(1-2)e) =0
But if {} ( z :I D) then we have
_ V3
}’EUB b.{1-—le =R™
bED B
which is a contradiction. Thus we have D N £0-limn—woxn™ 2. Therefore, is¥z-complete. [

Note that the set®  is%o -complete for any non-negative real number €o 20 by the proposition above

R™ = Upeam B(b, (1 =2 2p).
beam 5( { : ) o) And if 0= 0 then any dense subset D of Rm in the usual sense is also Zo-

B™ = Upep Bo. (1 - 2) 0.

since

complete since
Qmnor Rm — Qmare 0-complete as we know.

Theorem 2.9. Any closed subset D of Rm is t-complete for all®e =0

Proof. Suppose that D is a closed subset of Rm and let any “t-Cauchy sequence {xn} =D be given. By corollary
2.4, we have

In particular, bothQmand Rm — Qmare Zc-complete. But neither

SSL < 0-limn—ooxn.
But the set SSL({xn})-Ib since {xn} is ultimately bounded by proposition 2.6. Since SSL <D this implies that

¥ SSL =P £0-limn—sooxn .

But we have P=Dsince D is closed. Thus D is £o-complete for alle =00
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Corollary 2.10. Let D¥2be a subset of Rm and a real number® = %pe given. IfD is Zo-complete then? is %o-
complete. But the converse is not true in general.

Proof. B%/ the th{eoremjust above, it is clear that? is Eo-complete. Now consider the subset D of R given by
D={——1+—-: N
-1+ :meN]

Then D =D U {O 1} is 1-complete since it is closed. But if we choose a sequence {xn} such that ™~
=1

and" 2"t~ T for each n €N then SSL({xn}) = {0,1}. Hence we have

£0-limn—sooxn=""z=0 B D= g ¢

Since D N [0,1] = 2, D is not 1-complete. [

Theorem 2.11. Any convex subsetD of Rm is “2-complete for all positive real numbere = 0,

Proof. Suppose that D is a convex subset of Rm. Since Bis £0-complete, we may assume that D™ 2. And let any Zo-
Cauchy sequence{xn} =D be given. Since {xn} is also an ®e-Cauchy sequence in D which is fo-complete by
theorem 2.9 and D is also convex, we have

¥ hull(SSL) =D Ned-limn—ooxn .

But if D Nhull(SSL({xn})) *2 then we are done since the intersectionofDand the e-limit of {xn} is not an empty
set. Now suppose that DNhull(SSL({xn})) = 2. Then hull(SSL) is a subset of the derived set D , the set of all the
accumulation points of D. That is, hull(SSL) <P =D Hence hull(SSL) is a subset of the boundary oD of D. By

proposition 2.7, there are some vector y and some real number r >0 such that hull(SSL) N B(y,r) *2 and
B(y,r) C £0-limn—ooxn="z=ssL Bla. &),

Now choose a point B €hull(SSL) N B(y,r) #2. Then B €D =D Hence there is an element B0 €D such that B0

€B(y,r) since B(y,r) is an open set containing the accumulation point . Thus B0 €D N e0-limn—ooxnwhich
completes the proof. [l

Note that the convex subset of Rm is not 0-complete in general.

Proposition 2.12. (1) The union of the Zo-complete subsets does not need to be Zr-complete. (2) The intersection of
the fo-complete subsets does not need to be Zr-complete.

1 1
D, ={—=:inelN D,=M1+-:neN .
Proof. (1) Let * { n }and :={1+ T }.In order to prove that D1 is 1-complete, let any 1-

Cauchy sequence {xn} =D1 be given. Then SSL({xn}) *2and SSL =D1 U{0}. Hence we have
[-1,0] < e=bum B 1) Naesst Bl D=p.imnooxn.

Thus the intersection of D1 and the 1-limit of {xn} is not an empty set. HenceD1 is 1-complete. Since the diameter
of D2 is 1, we can prove by the same method that D2 is also 1-complete. But the union

1 1
D:LUD: :{—;,l-l-;:?‘lEﬂr}

={- n 1+— n e N}

is not 1complete as in the proof of corollary 2.10. (2) Let and

D, ={-=-,11+- eEN .
{ + o }. In order toprove that D1 is 1-complete, let any 1-Cauchy sequence {xn} =D1 be

given. Since the diameter of SSL satisfies the inequality diam(SSL) < 1, the following three cases occur.
@ = 5S¢
@ = S5L = [—

L
i"
G.ISSL—-[1+

Q) If SSL={0,1} thenD1 N1 - Ilmxn D1 N[0,1] = {0} "o, (i) If <= U ne N}then D1 N 1- limxn=
SSL_{1+ 1:neN?

1 = .
{ r!,O.n EN} ~ ®.(III) If then D1 N 1 — limxn= { + n:n €N} *o. Therefore, D1 is 1-
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complete. On the other hand, we can prove by the same method that D2 is also 1-complete. But the intersection
1 1
D,nD,={——1+-: N
1 =1 " + aon EN}
is not 1-complete as in the proof of (1). [
Definition 2.13. Let V = {v1,v2,--- ,vm+1} be a subset of Rm. We define that V is an m-dimensional =c-tetrahedral

vertex if and only if |[¥f = %= o for all i¥j.And we call the set'1zkzm+1 B (Vi 20) (resp. Nisizmass B ¥y 20))
an m-dimensional “o-tetrahedral open(resp. closed)ball and denote by I (V. EL‘:'(resp.Tm V.20l

Proposition 2.14. Let®e * 0 be a positive real number and a subsetD of? beZe-complete. ThenD N Tm(V. 25} * @
for each m-dimensionalo-tetrahedral vertex V such that vV <2 — 2,
Proof. Suppose that D N T (V. 25} = @ for some m-dimensional Zo-tetrahedral vertex V such that V <2 = 2 Let

limp v

V = {v1,v2,--- vm+1}. Then, for each 1 < k < m+1, there is a sequence{vi‘v} in D such that ¥p= vk. For
each natural number p €N, there are non-negativeintegers u,rf&N U {0} suchthatp=(m+ 1Lu+rand0<r<m+
1.Now let’s define the sequence {xp} as follows.
xp=v(r+p,p=(mM+Lu+rur eNU{0},0<r<m+1
M= Viy = Phgor each 1 <k <m+ 1, we have
£ —Ep

2

for each natural number p&N. Since

'L"-';l-ﬂ — Vg

Ver e IKeENs.tvp 2K 1sk<m+1) =

In order to show that {xp} is an o-Cauchy sequence, for each positive real number® = o, let any natural number
p.q > K be given. Then, by the Euclidean division theorem, we have

JureN U {0}st.p=(mM+Lu+rand0<r<m+1
and

dtseN U {0}st.g=(Mm+Lt+sand0<s<m+1.
Hence we have

VYerenIKeENs.tLYp.g=K = ||.rr_,—.rq.||

= ||—rp - 1:'r+1.| + ||1;'r+1. _1:3+1.|| + ||1:s+1_-rr,'||

+ ||Vr+1 - “'.3+1|| + |U.3+1 ~ Plz+aly

|1;":r+1_"rJ - 1;'r+1.|
£ — ED £ — ED

5 +&, + .

Thus {xp} is an Fe-Cauchy sequence in D. And it is obvious that SSL({xp}) = V . Hence we have

o=, 7= [ | B =T .20

o= el
Since D N T (V. &) = Bpy assumption, this implies that {xp} is not an®c-convergent sequence in D. ThusD is not
“o-complete. This contradiction completes the proof. O
Proposition 2.15. Let®0 = 0 pea positive real number. If a subsetD of Rm is not z-complete then there is an Zo-

Cauchy sequence {xp} such that =L M Bly.r) = @ diam (S5L) = Zcor some vector vy €Rm and some positive
real number r >0. Moreover, SSL satisfies the following condition.

Vo €SSL,3p €SSLExp}) s.t|* ~ B==e.
Proof. Suppose that D is not “z-complete. Then there exists an ¢-Cauchy sequence {xp} in D such that

DN p== ° =g If SSLND T2 then we have
L =] £y — lim X
2¥DNSSLEDN { Ngesse Ble.gp) }eDhn p—::: R

This is a contradiction. Since SSL({xp}) <D, this contradiction implies that SSL({xp}) D' =D Byt there are
elements y €Rm and r >0 by proposition 2.7 such that
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hull(SSL) N B(y,r) F2 andB @ ™) Maess B (@.20)
And if SSL N B(y,r) T2 then there is an element 00 €SSL D" = Dgych that 00 €B(y.r). Since ris an
accumulation point of D and B(y,r) is an open set, there is an element x €D such that x €B(y,r).Hence we

haveD M {Ngessi B (a.20)} # @ which is a contradiction. Thus we have SSLNB(y,r) = 2. Moreover, suppose that
there is an element a0 €SSL({xp}) such that ||%e = B||< 2o for all p €SSL({xp}). Thenwe have
max{|lag — gl|: 8 € SSL({x, )1 =1, < &
since the set SSL({xp}) is coi‘npact. Then we have
oy € Blag. ey — 1) E Ela. gy).

TESSL
since 00 €2 — DandBl@e- 20— 7) s an open set containing o0, we havel MB(&e.20 =11 # @ This js a
contradiction as the above. Thus we have
Vo €SSL,3p €SSL{xp}) s.t.|* ~ Bj|=5e.
Since the diameter of SSL is not greater than e, this implies that
Theorem 2.16Let% = Ope a positive real number and D be a subset of Rm. Then D is not ®z-complete if and only if
there is a compact subset S of 2" — Dsych that@iam (51 = soangD M {MNaes Bl 2)},
Proof. (=) Suppose that D is not “v-complete. Then there is an o-Cauchy sequence {xp} such that

DA [fo—tim|,  x» _ 5. By the D'—D

diam (S5L) = & N

propositionjust above, we have SSL({xp}) <&

and':Em"'r”{“';‘s‘t':{xi"}]}I = €0 Now put S = SSL({xp}). Then S is compact by lemma 1.3. And@iam(5) = 2 anq s
<D - Dby the proposition just above. Moreover,

nﬂgm,fnh m{ﬂ Bla,e))= 0

TES @ESSL

.- gp — lim ' ) '
since|-1"555‘*'-[Ir”3'B{m’E“‘jz.ﬂ-’== ®" (€) Suppose that there is a compact subset S of 2~ DPsuch that

D N {NgesB(a.5)} = © gngdiam(S) = 2 \ne can write as S = {sj:j €J} for some index set J. Since s <2 — D,
1
5| =

. e — L
for each j €J, there is a single-valued sequence {x]n} in D such that || '# r for each p&N. In order to

prove that D is not Zo-complete, let’s choose a multi-valued sequence {xp} so that xp= {xj:': j €J} for each p €N.
In order to show that {xp} is an Zo-Cauchy sequence, let any positive real number® = £cbe given. Choosing a

K= ; s — 5| =& ;
natural number K €N so large that £-%n, we have, since |77~ “kll = “tfor all j ke,
ve > e.3K eNst.(vpglp.g = K VX € Xp VA EXg

= < +

+||s_i'_5;i| S;‘-—qu”

5, =5

L
q

1 12
= ;-I-ED-I-E‘:_::E-I-ED{E—ED-I-ED:E

Therefore, the sequence {xp} is an £2-Cauchy sequence in D. Since the limit of the sub-sequential limits is also a
sub-sequential limit, we haveSSL({xp}) = E. BulE: Ssince S is closed. Thus SSL({xp}) = S.Finally, we have
pn{ (]| Baead=bn{|Bae)=0
@ESSL{[xp)) ZEs
by the assumption. Consequently, D is not 0-complete. ]

Definition 2.17. Let D be a subset of Rm and f :D — Rn be a multi-valued function. We define thatf is =z-uniformly
continuous onD if and only if we have
Ve = £,,38 > 0s.t.(vx,y € D) |lx — yl| < 6. wF(x), wF(y) =:~Hf{x] — fO)|<=

Proposition 2.18. (Criterion) Let f :D — Rn be a multi-valued function defined on a bounded subset D of Rm. Then
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f is “z-uniformly continuous on D if and only if {f(xp)} is an ®z-Cauchy sequence in Rn for every 0-Cauchy
sequence {xp} on D.

Proof. (7) Suppose thatf is Zo-uniformly continuous on D and any0-Cauchy sequence {xn} on D be given. Then we
have

Ve = 55,36 =05t (vx.ye D)|lx— yl| < & vFx). vfy) =>”f{xj — fO)|<=
Since {xn} is a 0-Cauchy sequence, we have
IKEN,s.t.(Vp,aeN)p,a> K, Vx(p),Vx(q) ={x(p) — x(a)]|< 3.
Hence we have
Ve > &, 3K ENst.(vp.geNip.q = K,vf{xp},vf{xq}:”f{xp}—f{xqj”<5,

Thus {f(xp)} is an o-Cauchy sequence in Rn. (€) Suppose that f is not e-uniformly continuous on D. Then we
have

35, > & gy, V50, 3x6.y6 €D, 3f(x3).f(ys) cRrn- & |1 —vall = 6. |I1fx) — £a) 1| z e}

1
&§=-
Choosing # for each natural number p €N, we have

\ L _
Hxpryp} =D AHf(xp)}.{f(yp)} SRnsuch that“xl’ ¥ || < and Ifxs) — fly )| = &,

Since {xp} and {yp} are bounded sequences in a bounded subset D and the closure D is compact, we may assume
that [1Mp-=¥p =HMpondy = & o 00me o &D by choosing the single-valued and convergent subsequences.

limp.zy = &

Now define a sequence {zp} by z2p—1 = xpand z2p = ypfor each natural number p €N. Then and

{zp} is a 0-Cauchy sequence in D. But we have
£(z2p-+) — f(z2p)I| = [I#,) — £3p)l| 2 &

for all p N. Hence {f(zp)} is not an “o-Cauchy sequence. This contradiction implies the #z-uniform continuity of
fonD. U

Theorem 2.19. Let f :D— Rn be a multi-valued function defined on a 0- complete subset D of Rm. If f is ®o-
uniformly continuous on D then, for every 0-Cauchy sequence {xp} on D, there is an element oo €D such
that{ﬂ[x o)) is Fo-convergent to f(a) f(D).
Proof. Let any 0-Cauchy sequence {xp} on D be given. Since f(x) is*z-uniformly continuous on D, we have

Ve = 5,36 =0 gq (VX yED)|Ix ~y[I<8.Vf(x),Vi(y)~ llfG) — f3)] < e
But we have 0 — limxp= {o} for some a €D since D is 0-complete.Hence we have

JK N s.t.Vp > K, ¥xp=||xp—al|< .
Hence we have
Ve = &0, 3K € Nt vp > K Vi(xp), Vi(o)=ff(Fe) ~ FlE)= £

[ —tim] _f(xp)

{f(xp)} isan Zo-convergent sequence of f(D). [

Thus we have f(a) € for all values of (o). Since f(a) (D) for all values of f(a), the sequence
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