On The Generalized Completeness

Buhyeon Kang ${ }^{1}$
${ }^{1}$ Department of Applied Mathematics, Seokyeong University, Seoul 02713, Republic of Korea

Abstract

We introduced the concept of the generalized limit (or, $\boldsymbol{\varepsilon} \boldsymbol{o}$-limit) of multi-valued sequences in [2]. The concept of the generalized limit is an extension of the concept of the usual limit of single-valued sequence. This concept of the generalized limit is also an extension of the concept of the approximation. In this paper, we introduce a concept of the generalized completeness using these concepts of the generalized limits and study some properties relating to these concepts.

Keywords -multi-valued function; generalization of limit; ${ }^{\varepsilon_{0}}$-limit; generalized completeness.

I. INTRODUCTION

The concept of the generalized limit is an extension of the concept of the usual limit of single-valued sequence and function. Andthe concept of the generalized limit isan extension of the concept of the approximation. We need sometimes the limits of multi-valued sequences and functions and the approximation of the unspecified number. In this section, we study briefly those concepts of the generalize limit and some results which we need later.
Definition 1.1. Let $\{x n\}$ be a vector-valued and multi-valued infinite sequence of elements of Rm. And let ${ }^{\varepsilon_{0} \geq 0}$ be any, but fixed, non-negative real number. If a set S satisfies the following condition, we call that the $\varepsilon 0$ generalized limit (or $\varepsilon 0$-limit) of $\{\mathrm{xn}\}$ as n goes to ∞ is S , and we denote it by $\varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}=\mathrm{S}: \mathrm{S}$ is the set of all the vectors α $\in \mathrm{Rm}$ satisfying the condition
$\forall \epsilon>\epsilon_{0}, \exists \mathrm{~K} \in \mathrm{~N} . \mathrm{t} . \mathrm{t}(\forall \mathrm{n} \in \mathrm{N}) \mathrm{n} \geq \mathrm{K},\left(\forall \mathrm{x}_{\mathrm{n}}\right) \Rightarrow\left\|x_{\mathrm{n}}-\alpha\right\|<\epsilon_{\mathrm{x}}$
If the set S in the definition above is not empty we say that $\{x n\}$ is an $\varepsilon 0$-convergent sequence or $\varepsilon 0$-converges to S. We also define thatany member $\alpha \in S$ is an approximate value of the generalized limit of $\{x n\}$ with the limit of the error 0 . Then we can regard $\alpha \in S$ as the approximate value of the limit of $\{x n\}$ whether $\{x n\}$ converges in the usual sense or not.
Definition 1.2. For a multi-valued infinite sequence $\{x n\}$ of vectors in $R m$, we call that $\{x n\}$ is ultimately bounded if and only if there exist real numbers K and M such that $(\forall n \in N) n \geq K, \forall x n \Rightarrow\|x n\| \leq M$.
Lemma 1.3. (Representation) Let $\{x n\}$ be a vector-valued and multi-valued infinite sequence. And let $\epsilon_{0} \geq 0^{0}$ be a non-negative real number. Suppose that $\{x n\}$ is ultimately bounded. Ifhave $\varepsilon 0-l i m n \rightarrow \infty x n=$ Sthen S isa convex and compact subset of Rm such that $S=\cap\left\{\overline{\mathrm{B}}\left(\alpha_{v}, \varepsilon_{0}\right): \alpha \in \operatorname{SSL}\right\}$. Here $\overline{\mathrm{B}}\left(\alpha_{,} \varepsilon_{0}\right)$ denotes the closed ball $\bar{B}\left(\alpha_{v} \epsilon_{0}\right)=\left\{x \in R^{m}:\|x-\alpha\| \mid \leq \epsilon_{0}\right\}$ and
$\operatorname{SSL}=\operatorname{SSL}(\{\mathrm{xn}\})=\left\{\alpha \in \operatorname{Rm} \mid \exists\left\{\left\{^{\left.x_{n_{k}}\right\}} \leq\{\mathrm{xn}\}\right.\right.\right.$ s.t. $\left.{ }^{\lim }{ }_{k \rightarrow \infty} x_{n_{n_{k}}}=\alpha\right\}$
and $\left\{{ }^{\left.x_{n_{k}}\right\}} \leq\{\mathrm{xn}\}\right.$ means that $\left\{{ }^{x_{n_{k}}}\right\}$ is a single-valued subsequence of $\{\mathrm{xn}\}$.
Proof. (\subseteq) Let any elements $\beta \in S$ and $\alpha \in$ SSL begiven. Then
$\forall \epsilon>\varepsilon_{0}, \exists \mathrm{~K}_{1} \in \mathrm{~N}$ s.t. $(\forall \mathrm{nn} \in \mathrm{N}) \mathrm{n} \geq \mathrm{K}_{1},\left(\forall \mathrm{x}_{\mathrm{n}}\right) \Rightarrow\left\|x_{\mathrm{n}}-\beta\right\|<\varepsilon_{0}+\frac{\varepsilon-\varepsilon_{0}}{2}$.
Since $\alpha \in$ SSL, there exists a single-valued and convergent subsequence $\left\{{ }^{\left.x_{n_{k}}\right\}}\right.$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$.Thus we have
$\forall \epsilon>\epsilon_{0}, \exists K_{2} \in N$ s.t. $(\forall k \in N) k \geq K_{2} \Rightarrow| | x_{n_{k}}-\alpha \| \left\lvert\,<\frac{\varepsilon-\epsilon_{0}}{2}\right.$.
.If we take a natural number $K=\max \{K 1, K 2\}$ then we have $\left\|\left|\beta-\alpha\|=\| \beta-x_{n_{K}}+x_{n_{K}}-\alpha\left\|\left|\leq\left\|\beta-x_{n_{K}}\right\|\right|+\right\| x_{n_{K}}-\alpha \|\right|<\varepsilon_{0}+\frac{\varepsilon-\varepsilon_{0}}{2}+\frac{\epsilon-\varepsilon_{0}}{2}=\epsilon\right.$.
Since ${ }^{\varepsilon>\varepsilon_{0}}$ was arbitrary, we have $\left\|^{\beta-\alpha}\right\| \leq \varepsilon_{0}$. That is, ${ }^{\beta \in \bar{B}\left(\alpha, \varepsilon_{0}\right)}$. Since $\alpha \in \operatorname{SSL}$ was arbitrary, we have $^{\beta \in \cap\left\{\overline{\mathrm{B}}\left(\alpha, \varepsilon_{0}\right): \alpha \in \operatorname{SSL}\right\}}$. Since $\beta \in \mathrm{S}$ was also arbitrary, we haveS $\subseteq{ }^{\cap\left\{\overline{\mathrm{B}}\left(\alpha, \varepsilon_{0}\right): \alpha \in \operatorname{SSL}\right\}}$. \supseteq. It isobvious
thatS ${ }^{\#}$ Rm since $\{x n\}$ is ultimately bounded. In order to prove the opposite inclusion, let β^{\notin} S be any member of $\mathrm{Rm}-\mathrm{S} \stackrel{\neq}{\varnothing}$. Then we have
$\exists \varepsilon_{1}>\varepsilon_{0}$ s.t. $\left(\forall k \in N, \exists n_{k} \in N, \exists x_{n_{k}}\right.$ s.t. $\left.\left\|x_{n_{k}}-\beta\right\| \geq \varepsilon_{1}\right)$
Since $\left\{^{\left.x_{n_{k}}\right\}}\right.$ is ultimately bounded, $\left\{^{\left.x_{n_{k}}\right\}}\right.$ is a bounded sequence in Rm. Hence there is a convergent subsequence $\left\{{ }^{\left.x_{n_{k_{D}}}\right\}}\right.$ of $\{x\}$ by the BolzanoWeierstrass theorem. Thus we may assume that $\lim _{p \rightarrow m} x_{n_{n_{p}}}=\alpha 0$ for some $\alpha 0 \in \mathrm{Rm}$. Then we have, for such an $E_{1}>\varepsilon_{0 x}$,
$\exists \mathrm{K} \in \mathrm{N}$ s.t. $\forall \mathrm{p} \geq \mathrm{K} \Rightarrow\left\|\mathrm{x}_{\mathrm{n}_{\mathrm{k}_{p}}}-\alpha_{0}\right\|<\frac{\mathrm{E}_{1}-\varepsilon_{0}}{2}$.
Hence we have
$\left\|\beta-\alpha_{0}\right\|=\left\|\beta-x_{n_{k_{K}}}+x_{n_{n_{K}}}-\alpha_{0}\right\| \geq\left\|\beta-x_{n_{k_{K}}}\right\|-\left\|x_{n_{k_{K}}}-\alpha_{0}\right\|>\varepsilon_{1}-\frac{\varepsilon-\varepsilon_{0}}{2}=\frac{\varepsilon+\varepsilon_{0}}{2}$.
Since $\frac{\varepsilon_{1}+\varepsilon_{0}}{2}>\varepsilon_{0}$, this implies that $\beta \notin \bar{B}\left(\alpha_{0}, \varepsilon_{0}\right)$. Since $\alpha 0 \in$ SSL, this implies that $\beta \notin\left\{\bar{B}\left(\alpha, \varepsilon_{0}\right) ; \alpha \in \operatorname{SSL}\right\}$. Thus we have $\mathrm{S}=\mathrm{\cap}_{\text {बessi }} \overline{\mathrm{B}}\left(\alpha, \varepsilon_{0}\right)$. On the other hand, since S is the intersection of the closed balls $\bar{B}\left(\alpha, \varepsilon_{0}\right)$ which are bounded, closed and convex, S is compact and convex inRm. Finally, if $S=\varnothing$ then S is clearly convex and compact, and $\cap_{\alpha \in S S L} \overline{\mathrm{~B}}\left(\alpha, \varepsilon_{0}\right) \subseteq S=\emptyset$.
Corollary 1.4. Let $\{x n\}$ be a multi-valued infinite sequence of vectors in $R m$ and $S S L=\{a\}$ for some vector $a \in R m$.
Then we have $\varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}=\overline{\mathrm{B}}\left(a_{,}, \varepsilon_{0}\right)$ for all $\varepsilon_{0} \geq 0$.
Proof. Since the sub-sequential limit a of $\{x n\}$ is unique, this corollary follows from the above lemma 1.3.
Lemma 1.5. Let $\{x n\}$ be a vector-valued and multi-valued infinite sequence and $\epsilon_{0} \geq 0$. Suppose that $\{x n\}$ is an ultimately bounded sequence. Then the set SSL of all the single-valued sub-sequential limits of $\{x n\}$ is a non-empty and compact subset of Rm.
Proof. Since the sequence $\{\mathrm{xn}\}$ is ultimately bounded, the set SSL is clearly non-empty and bounded. In order to prove that SSL is aclosed subset of Rm , let any element $\alpha \in \operatorname{SSL}$ be given. If $\alpha \in \operatorname{SSL}$ we are done. If α^{\boxminus} SSL then α must be an accumulation point of the set SSL. Hence there is a single-valued sequence $\{\alpha \mathrm{n}\} \subseteq \operatorname{SSL}$ such that $\operatorname{limn} \rightarrow \infty \alpha \mathrm{n}=\alpha$. Since $\alpha 1 \in \mathrm{SSL}$, there is one value, say ${ }^{x_{n_{1}}}$, of the multi-valued term ${ }^{x_{n_{1}}}{ }^{\text {in }}\{\mathrm{xn}\}$ such that $\left\|x_{n_{1}}-\alpha_{1}\right\|<1$. And since $\alpha 2 \in$ SSL, there is one value, say ${ }^{x_{n_{2}}}$, of the multi-valued term ${ }^{x_{n_{2}} \text { in }\{\mathrm{xn}\}}$ such that $\left\|x_{n_{2}}-\alpha_{2}\right\|<\frac{1}{2}$ and $n 2>n 1$. By applying those methods, we can inductively choose a single-valued subsequence $\left\{x_{n_{k}}\right\}$ of $\{\mathrm{xn}\}$ such that $\left\|x_{n_{k}}-\alpha k\right\|<\frac{1}{k}$ for all natural number $k \in N$. Since $\left\|^{x_{n_{k}}}-\alpha\right\| \leq\left\|x_{n_{k}}-\alpha_{k}\right\|+\left\|\alpha_{k}-\alpha\right\|$, if we take the limit on both sides we have limk $\rightarrow \infty^{x_{n_{k}}=\alpha \text {. Thus we have } \alpha}$ \in SSL which completes the proof.

II. THE GENERALIZED COMPLETENESS

In this section, we define the concept of the ${ }^{\varepsilon_{0}}$ generalized completeness of a set. Note that ${ }^{\varepsilon_{0}}$ denotes some fixed nonnegative real number.
Definition 2.1. Let $\{x n\}$ be a multi-valued sequence in $R m$. We define that $\{x n\}$ is an $\varepsilon_{0 \text {-Cauchy sequence if and }}$ only if
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall m, n) m, n \geq K, \forall x_{m,}, \forall x_{n} \Rightarrow\left\|x_{m}-x_{n}\right\|<\epsilon$.
Definition 2.2. Let Sbe any non-empty subset of Rm. Then we define thatS is ${ }^{\varepsilon_{0}}$-complete in Rm if and only if $\varepsilon 0$ $\operatorname{limn} \rightarrow \infty \mathrm{xn}^{\cap} \mathrm{S} \neq \varnothing$ forany ε_{0}-Cauchysequence $\{\mathrm{xn}\}$ in S.
Lemma 2.3. Let $\{\mathrm{xn}\}$ be an ${ }^{\varepsilon_{0}}$-Cauchy sequence in Rm. If $\alpha \in \operatorname{SSL}$ then $\alpha \in \varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}$.
Proof. Let $\{x n\}$ be an ${ }^{\varepsilon_{0}}$-Cauchy sequence in Rm . Then we have
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall m, n) m_{s} n \geq K, \forall x_{m}, \forall x_{n} \Rightarrow\left\|\mid \mathrm{x}_{\mathrm{m}}-x_{n}\right\|<\epsilon_{0}+\frac{\varepsilon-\epsilon_{0}}{2}$
since $\varepsilon^{\varepsilon_{0}}+\frac{\varepsilon_{1}-\varepsilon_{0}}{2}>\varepsilon_{0}$. Since $\alpha \in \mathrm{SSL}$, there is a single-valued and convergent subsequence $\left\{^{\left.x_{n_{k}}\right\}}\right.$ of $\{\mathrm{xn}\}$ such that $\lim _{\mathrm{n} \rightarrow=\infty} x_{n_{k}}=\alpha$. Now since $\mathrm{nk} \geq \mathrm{k}$, we have, by replacing xnto $x_{n_{k}}$, $\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall m, k) m_{,} k \geq K, \forall x_{m} \Rightarrow| | \mathrm{x}_{\mathrm{m}}-x_{n_{k}} \| \left\lvert\,<\epsilon_{0}+\frac{\epsilon-\varepsilon_{0}}{2}\right.$.
For each fixed term number m and each value of $x m$, by taking the limit as kgoes to ∞, we have
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall m) m \geq K, \forall x_{m} \Rightarrow\left\|\mid \mathrm{x}_{\mathrm{m}}-\alpha\right\| \| \leq \varepsilon_{0}+\frac{\varepsilon-\varepsilon_{0}}{2}=\frac{\varepsilon+\epsilon_{0}}{2}<\varepsilon$.
Hence $\alpha \in \varepsilon 0$-limn $\rightarrow \infty$ xn. \square
Corollary 2.4. Let $\{\mathrm{xn}\}$ be an ${ }^{\varepsilon_{0}}$-Cauchy sequence in Rm . If we denote by hull(SSL) the convex hull of SSL then hull(SSL) ${ }^{\#} \varnothing$ and
hull(SSL) $\subseteq \varepsilon 0-$ limn $\rightarrow \infty \mathrm{xn}=\cap_{\text {aessL }} \overline{\mathrm{B}}\left(\alpha, \varepsilon_{0}\right)$.
Proof. This follows from lemmas 1.3, 2.3 and the convex property of the $\varepsilon_{0-l i m i t .}$
Lemma 2.5. Let $\{\mathrm{xn}\}$ be an ε_{0}-Cauchy sequence in Rm. Then the diameter of SSL is less than or equal to ${ }^{\varepsilon_{0}}$.
Proof. Let $\alpha, \beta \in \operatorname{SSL}$ be any two elements. Since $\{\mathrm{xn}\}$ is an $\varepsilon_{0 \text {-Cauchy sequence in } R m \text {, we have }}$
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall m, n) m, n \geq K, \forall x_{m}, \forall x_{n} \Rightarrow\left\|\mathrm{x}_{\mathrm{m}}-x_{n}\right\|<\epsilon_{0}+\frac{\varepsilon-\epsilon_{0}}{2}$
since $\varepsilon^{\varepsilon_{0}}+\frac{\varepsilon_{1}-\varepsilon_{0}}{2}>\varepsilon_{0}$. And since $\alpha, \beta \in \mathrm{SSL}$, there are two single-valued and convergent subsequences $\{\mathrm{xmk}\}$ and $\{\mathrm{xnk}\}$ of $\{\mathrm{xn}\}$ such that $\lim _{\mathrm{m} \rightarrow \infty} x_{m_{k}}=\alpha_{\text {and }} \lim _{\mathrm{n} \rightarrow \infty} x_{n_{k}}=\beta$. Since $\mathrm{mk}, \mathrm{nk} \geq \mathrm{k}$, we have
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $(\forall k) k \geq K \Rightarrow| | x_{\mathrm{m}_{\mathrm{k}}}-x_{n_{k}} \|<\epsilon_{0}+\frac{\varepsilon-\varepsilon_{0}}{2}$.
By taking the limit as kgoes to ∞, we have
$\|\alpha-\beta\| \leq \epsilon_{0}+\frac{\epsilon-E_{0}}{2}=\frac{\epsilon+E_{0}}{2}<\epsilon$.
Since $\varepsilon>\varepsilon_{0}$ was arbitrary, this implies that $\|\alpha-\beta\| \leq \varepsilon_{0}$. Hence diam(SSL) $\leq \varepsilon_{0}$. \square
Proposition 2.6. Let $\{x n\}$ be an ${ }^{\varepsilon_{0}}$-Cauchy sequence in $R m$. Then $\{x n\}$ is ultimately bounded.
Proof. Since $\{x n\}$ is an ${ }^{\varepsilon_{0}}$-Cauchy sequence, we have
$\exists K \in N$ s.t. $(\forall m, n) m, n \geq K, \forall x_{m}, \forall x_{n} \Rightarrow\left\|x_{\mathrm{m}}-x_{n}\right\|<\varepsilon_{0}+1$.
Choosing one value xKof xK , we have
$\exists K \in N$ s.t. $(\forall m) m \geq K_{v}, \forall x_{m} \Rightarrow\left\|\mathrm{x}_{\mathrm{m}}-x_{K}\right\|<\epsilon_{0}+1$.
Hence we have
$\exists K \in N$ s.t. $(\forall m) m \geq K, \forall x_{m} \Rightarrow\left\|x_{\mathrm{m}}\right\|<\varepsilon_{0}+\left\|x_{K}\right\|+1$.
Thus $\{x n\}$ is ultimately bounded.
Proposition 2.7. Let $\{\mathrm{xn}\}$ be an $\varepsilon_{0}-$ Cauchy sequence in Rm. If $\varepsilon_{0}>0$ and $\operatorname{diamSSL}(\{\mathrm{xn}\})=\mathrm{d}$ then there exists a vector $\gamma \in \operatorname{Rm}$ and a positive real number $r \geq\left(\varepsilon_{0}-\frac{\sqrt{2}}{2} d\right)>0$ such that $\mathrm{B}(\gamma, \mathrm{r}) \cap \operatorname{hull}(\mathrm{SSL}) \neq \varnothing$ and $\mathrm{B}(\gamma, \mathrm{r}) \subseteq \varepsilon 0$ $\operatorname{limn} \rightarrow \infty x n$..
Proof. Note that ${ }^{\mathrm{d}} \leq \varepsilon_{0}$ since the diameter of SSL is less than or equal to ${ }^{\varepsilon_{0}}$ by lemma 2.5. If $\mathrm{d}=0$ then $\operatorname{SSL}=\{\gamma\}$ is a singleton for some $\gamma \in \operatorname{Rm}$.Hencewe have $\{\gamma\} \subseteq \mathrm{B}(\gamma, 0)=\varepsilon 0$-limn $\rightarrow \infty$ xnby the corollary 1.4. Suppose that $\mathrm{d}>0$. Then there are two distinct elements $\mathrm{x} 0, \mathrm{y} 0 \in \operatorname{SSL}$ such that $\|\mathrm{x} 0-\mathrm{y} 0\|=\mathrm{d}$ since SSL is compact by the lemma 1.5. By an appropriate rotation and translation of the axes and the origin in the usual Euclidean coordinate system of Rm, we may assume that $x_{0}=\left(-\frac{d}{2}, 0, \cdots, 0\right), y_{0}=\left(\frac{d}{2}, 0, \cdots, 0\right)$ and $\frac{x_{0}+y_{0}}{2}={ }_{(0,0, \cdots, 0) \text {. Then we must have }}$
$\mathrm{SSL} \subseteq \mathrm{B}(\mathrm{x} 0, \mathrm{~d}) \cap \mathrm{B}(\mathrm{y} 0, \mathrm{~d})$
sincediamSSL $(\{x n\})=\mathrm{d}$. But the equation of the most far boundary from the origin of the intersection of the boundaries $\partial B(x 0, d)$ and $\partial B(y 0, d)$ is given by
$\left(\mathrm{x}_{1}-\frac{d}{2}\right)^{2}+x_{2}^{2}+\cdots+x_{m}^{2}=d^{2}=\left(\mathrm{x}_{1}+\frac{d}{2}\right)^{2}+x_{2}^{2}+\cdots+x_{m}^{2}$.
That is, we have
$\mathrm{x}_{1}=0, x_{2}^{2}+\cdots+x_{m}^{2}=\frac{a}{4} d^{2}$.
Thus the distance between the origin and the boundary of the intersection $B(x 0, d) \cap B(y 0, d)$ satisfies that
$\operatorname{dist}\left(0, \partial\left[\overline{\mathrm{~B}}\left(x_{0}, d\right) \cap \overline{\mathrm{B}}\left(y_{0}, d\right)\right]\right) \leq \frac{\sqrt{2}}{2} d$.
 boundary is not a convex set, this implies that ${ }^{\text {hull(SLL) } \cap \mathrm{B}\left(0, \frac{\sqrt{3}}{2} d\right) \neq \varnothing}$ if hull(SSL) is not a singleton. In fact, hull(SSL) is not d a singleton since the diameter of SSL is positive. Now we have proved that SSL $\subseteq \overline{\bar{B}}\left(\frac{x_{0}+y_{0}}{2}, \frac{\sqrt{6}}{2} d\right)$ and $\overline{\overline{x_{0} \gamma_{0}}} \cap B\left(\frac{x_{0}+y_{0}}{2}, \frac{\sqrt{\bar{B}}}{2} d\right) \neq \emptyset$.
Thus we have
$\overline{\mathrm{B}}\left(\frac{x_{0}+y_{0}}{2}, \epsilon_{0}-\frac{\sqrt{d}}{2} d\right)=\bigcap_{\alpha \in \bar{B}\left(\frac{x_{0}+y_{0}}{2} \sqrt{3} d\right)} \bar{B}\left(\alpha_{,}, \epsilon_{0}\right) \subseteq \cap_{\alpha \in S S L} \bar{B}\left(\alpha_{,}, \epsilon_{0}\right)={ }_{\varepsilon 0-\mathrm{limn} \rightarrow \infty \mathrm{xn} . .}$

$$
\gamma=\frac{x_{0}+y_{0}}{2} \quad \mathrm{r}=\varepsilon_{0}-\frac{\sqrt{2}}{2} d
$$

By taking and ${ }^{2}$, we have the second result in this proposition. And we $\overline{x_{0} Y_{0}} \cap B(\gamma, r) \subseteq \mathrm{B}\left(\frac{x_{0}+y_{0}}{2} \frac{\sqrt{1}}{2} d \quad \overline{x_{0} y_{0}} \cap B(\gamma, r) \subseteq \mathrm{B}\left(\alpha, \varepsilon_{0}\right) \quad \alpha \in \mathrm{B}\left(\frac{x_{0}+y_{0}}{2} \frac{\sqrt{2}}{2} d\right.\right.$
have ${ }^{2},{ }^{2}$). Thus we have ${ }^{x_{0} y_{0}} \cap B(\gamma, \gamma)=B\left(\alpha, \varepsilon_{0}\right)$ for all ${ }^{2},{ }^{2}$). This givesthe first result in this proposition which completes the proof.
Theorem 2.8. If $\mathrm{D} \subseteq R \mathrm{Rm}$ satisfies $\mathrm{U}_{\vec{b} \in D} \bar{B}\left(b,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right)=R^{m}$ then D is ε_{0}-complete.
Proof. At first, assume that $\varepsilon_{0}=0$ and let any 0 -Cauchy sequence $\{x n\}$ be given. Then any single-valued subsequence of $\{x n\}$ is a Cauchy sequence in the usual sense. Since $R m$ is complete in the usual sense and $\{x n\}$ is a 0 -Cauchy sequence, the set of all the sub-sequential limits $\operatorname{SSL}(\{x n\})$ must be a singleton. Thus $\{x n\}$ is a 0 convergent sequence. Suppose that $\varepsilon_{0}>0$. Let any $\varepsilon_{0 \text {-Cauchy sequence }\{x n\} \text { in } R m \text { be given. If we set diam(SSL) }}$ $=\mathrm{d}$, then, by the proposition above, we have
$\bar{B}\left(\gamma, \varepsilon_{0}-\frac{\sqrt{2}}{2} d\right) \subseteq \varepsilon 0-\mathrm{limn} \rightarrow \infty \mathrm{xn}$.
for some vector $\gamma \in R m$. Since $\begin{gathered}\mathrm{d} \leq \varepsilon_{0} \\ \text { by lemma 2.5, } \\ \overline{\mathrm{B}}\left(\gamma,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right)\end{gathered}$ is a subset of $\bar{B}\left(\gamma, \varepsilon_{0}-\frac{\sqrt{2}}{2} d\right)$. Thus we have $\overline{\mathrm{B}}\left(\gamma,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right) \subseteq \varepsilon 0-\mathrm{limn} \rightarrow \infty \mathrm{xn}$.
But if $\mathrm{D} \cap \overline{\mathrm{B}}\left(\gamma,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right)=\varnothing$ then we have
$\gamma \notin \bigcup_{B \in D} \overline{\mathrm{~B}}\left(b,\left\{1-\frac{\sqrt{3}}{2}\right\} \varepsilon_{0}\right)=R^{m}$
which is a contradiction. Thus we have $\mathrm{D} \cap \varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}{ }^{\mp} \varnothing$. Therefore, ${ }^{D}$ is ${ }^{\varepsilon_{0}}$-complete.
Note that the set R^{m} is ε_{0}-complete for any non-negative real number $\epsilon_{0} \geq 0$ by the proposition above since $R^{m}=\mathrm{U}_{b \in R^{m}} \bar{B}\left(b,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right)$. And if $\varepsilon_{0}>0$ then any dense subset D of Rm in the usual sense is also $\varepsilon_{0_{0}}$ complete since $R^{m}=\bigcup_{b \in D} \bar{B}\left(b,\left(1-\frac{\sqrt{2}}{2}\right) \varepsilon_{0}\right)$ x In particular, bothQmand $R m-$ Qmare ε_{0}-complete. But neither Qmnor Rm - Qmare 0-complete as we know.
Theorem 2.9. Any closed subset D of Rm is ε_{0}-complete for all $\varepsilon_{0} \geq 0$.
Proof. Suppose that D is a closed subset of Rm and let any ${ }^{\varepsilon_{0}}$-Cauchy sequence $\{\mathrm{xn}\} \subseteq \mathrm{D}$ be given. By corollary 2.4, we have
$\mathrm{SSL} \subseteq \varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}$.
But the set $\operatorname{SSL}(\{x n\})^{\mp} \varnothing$ since $\{x n\}$ is ultimately bounded by proposition 2.6. Since $\operatorname{SSL} \subseteq \overline{\mathrm{D}}$, this implies that $\varnothing^{\#} \mathrm{SSL} \subseteq \bar{D}^{\bar{D}} \cap \varepsilon 0$-limn $\rightarrow \infty \mathrm{xn}$.
But we have $\bar{D}_{=\text {Dsince }} \mathrm{D}$ is closed. Thus D is ${ }^{\varepsilon_{0}}$-complete for all ${ }^{\varepsilon_{0}} \geq 0 . \square$

Corollary 2.10. Let $D^{\mp} \varnothing$ be a subset of Rm and a real number $\varepsilon_{0} \geq 0$ be given. IfD is $\varepsilon_{0 \text {-complete then }} \bar{D}$ is ε_{0}. complete. But the converse is not true in general.
Proof. By the theorem just above, it is clear that \bar{D} is ε_{0}-complete. Now consider the subset D of R given by $\mathrm{D}=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}$.
Then $\mathrm{D}=\mathrm{D} \cup\{0,1\}$ is 1 -complete since it is closed. But if we choose a sequence $\{\mathrm{xn}\}$ such that ${ }^{x_{2 n}}=-\frac{1}{2 n}$ and $^{x_{2 n-1}}=1+\frac{1}{2 n-1}$ for each $n \in N$ then $\operatorname{SSL}(\{x n\})=\{0,1\}$. Hence we have $\varepsilon 0-\operatorname{limn} \rightarrow \infty \mathrm{xn}=\cap_{\alpha \in[0,1]} B(\alpha, 1)=[0,1]$.
Since $D \cap[0,1]=\varnothing, D$ is not 1 -complete.
Theorem 2.11. Any convex subsetD of Rm is ε_{0}-complete for all positive real number $\varepsilon_{0}>0$.
Proof. Suppose that D is a convex subset of $R m$. Since $\emptyset_{i s} \varepsilon_{0}$-complete, we may assume that $D^{\neq \varnothing}$. And let any $\varepsilon_{0_{-}}$
Cauchy sequence $\{x n\} \subseteq D$ be given. Since $\{x n\}$ is also an ${ }^{\varepsilon_{0}}$-Cauchy sequence in D which is $\varepsilon_{0 \text {-complete }}$ by theorem 2.9 and D is also convex, we have
$\varnothing^{\#}$ hull(SSL) $\subseteq \mathrm{D} \cap \varepsilon 0-\mathrm{limn} \rightarrow \infty \mathrm{xn}$.
But if $\mathrm{D} \cap \operatorname{hull}(\operatorname{SSL}(\{\mathrm{xn}\})){ }_{\varnothing}{ }_{\varnothing}$ then we are done since the intersectionofDand the ${ }^{\varepsilon_{0}}$-limit of $\{\mathrm{xn}\}$ is not an empty set. Now suppose that $\operatorname{D} \cap \operatorname{hull}(\operatorname{SSL}(\{x n\}))=\varnothing$. Then hull(SSL) is a subset of the derived set D^{s}, the set of all the accumulation points of D . That is, hull(SSL) $\subseteq D^{v}-D$. Hence hull(SSL) is a subset of the boundary $\partial \mathrm{D}$ of D . By proposition 2.7, there are some vector γ and some real number $\mathrm{r}>0$ such that hull(SSL) $\cap \mathrm{B}(\gamma, \mathrm{r}) \not{ }^{\neq \varnothing}$ and $\mathrm{B}(\gamma, \mathrm{r}) \subseteq \varepsilon 0-\mathrm{limn} \rightarrow \infty \mathrm{xn}=\mathrm{\cap}_{\alpha \in \text { SSL }} B\left(\alpha, \varepsilon_{0}\right)$.
Now choose a point $\beta \in \operatorname{hull(SSL}) \cap \mathrm{B}(\gamma, \mathrm{r}) \neq \varnothing$. Then $\beta \in D^{\prime}-D$. Hence there is an element $\beta 0 \in \mathrm{D}$ such that $\beta 0$ $\in \mathrm{B}(\gamma, \mathrm{r})$ since $\mathrm{B}(\gamma, \mathrm{r})$ is an open set containing the accumulation point β. Thus $\beta 0 \in \mathrm{D} \cap \varepsilon 0$-limn $\rightarrow \infty$ xnwhich completes the proof.
Note that the convex subset of Rm is not 0 -complete in general.
Proposition 2.12. (1) The union of the ${ }^{\varepsilon_{0}}$-complete subsets does not need to be ${ }^{\varepsilon_{0}}$-complete. (2) The intersection of the ε_{0}-complete subsets does not need to be ${ }^{\varepsilon_{0}}$-complete.
Proof. (1) Let $D_{1}=\left\{-\frac{1}{n}: n \in N\right\}$ and $D_{2}=\left\{1+\frac{1}{n}: n \in N\right\}$.In order to prove that D1 is 1-complete, let any 1Cauchy sequence $\{x n\} \subseteq D 1$ be given. Then $\operatorname{SSL}(\{x n\}) \not{ }^{\neq}$and $\operatorname{SSL} \subseteq D 1 \cup\{0\}$. Hence we have $[-1,0] \subseteq \bigcap_{\alpha \in \operatorname{Duf0}\}} B(\alpha, 1) \subseteq \bigcap_{\alpha \in S S L} B(\alpha, 1)=1-\operatorname{limn} \rightarrow \infty \mathrm{xn}$.
Thus the intersection of D1 and the 1-limit of $\{x n\}$ is not an empty set. HenceD1 is 1-complete. Since the diameter of D 2 is 1 , we can prove by the same method that D 2 is also 1 -complete. But the union
$\mathrm{D}_{1} \cup \mathrm{D}_{2}=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}$
is not 1 -complete as in the proof of corollary 2.10. (2) Let $D_{1}=\left\{-\frac{1}{n}, 0,1+\frac{1}{n}: n \in N\right\}$ and $D_{2}=\left\{-\frac{1}{n}, 1,1+\frac{1}{n}: n \in N\right\}$. In order toprove that D1 is 1-complete, let any 1-Cauchy sequence $\{x n\} \subseteq D 1$ be given. Since the diameter of SSL satisfies the inequality diam $(\mathrm{SSL}) \leq 1$, the following three cases occur.

$$
\begin{aligned}
& \emptyset \neq \mathrm{SS} \\
& \emptyset \neq \mathrm{SSL}=\left\{-\frac{1}{n},\right. \\
& \emptyset \neq \mathrm{SSL}=\left\{1+\frac{1}{n^{x}} .\right.
\end{aligned}
$$

(i) If SSL $=\{0,1\}$ then $\mathrm{D} 1 \cap 1-\operatorname{limxn}=\mathrm{D} 1 \cap[0,1]=\{0\}^{\neq \varnothing}$. (ii) If ${ }^{\text {SSL }} \subseteq\left\{-\frac{1}{n}, 0: n \in N\right\}$ then D1 $\cap 1-\operatorname{limxn}=$ $\left\{-\frac{1}{n}, 0: n \in \mathrm{~N}\right\}{ }^{\neq} \varnothing_{\text {.(iii) If }}$ SSL $\subseteq\left\{1+\frac{1}{n}, 1: n \in N\right\}$ then D1 $\cap 1-\operatorname{limxn}=\left\{1+\frac{1}{n}: n \in \mathrm{~N}\right\} \neq \varnothing$. Therefore, D1 is 1-
complete. On the other hand, we can prove by the same method that D 2 is also 1-complete. But the intersection $\mathrm{D}_{1} \cap \mathrm{D}_{2}=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}$
is not 1 -complete as in the proof of (1).
Definition 2.13. Let $\mathrm{V}=\{\mathrm{v} 1, \mathrm{v} 2, \cdots, \mathrm{vm}+1\}$ be a subset of Rm . We define that V is an m -dimensional ε_{0}-tetrahedral vertex if and only if $\left\|^{v_{i}-v_{j}}\right\|=\varepsilon_{0}$ for all i^{\neq}j. And we call the set $\cap_{1 \leq k s m+1} B\left(v_{k}, \varepsilon_{0}\right)$ (resp. $\cap_{1 \leq k s m+1} \bar{B}\left(v_{k}, \varepsilon_{0}\right)$) an m-dimensional ε_{0}-tetrahedral open(resp. closed)ball and denote by $T_{m}\left(V_{s} \varepsilon_{0}\right)\left(\right.$ resp. $\overline{T_{m}}\left(V, \varepsilon_{0}\right)$.
Proposition 2.14. Let $\varepsilon_{0}>0$ be a positive real number and a subsetD of R^{m} be $^{\varepsilon_{0}}$-complete. Then $\mathrm{D} \cap \overline{T_{m}}\left(V, \varepsilon_{0}\right) \neq \emptyset$ for each m-dimensional ${ }^{\varepsilon_{0}}$-tetrahedral vertex V such that $\mathrm{V} \subseteq D^{\prime}-D$.
Proof. Suppose that $\mathrm{D} \cap \overline{T_{m}}\left(V, \varepsilon_{0}\right)=\emptyset$ for some m-dimensional ε_{0}-tetrahedral vertex V such that $\mathrm{V} \subseteq D^{s}-D$. Let $\mathrm{V}=\{\mathrm{v} 1, \mathrm{v} 2, \cdots, \mathrm{vm}+1\}$. Then, for each $1 \leq \mathrm{k} \leq \mathrm{m}+1$, there is a sequence $\left\{v_{k_{p}}\right\}$ in D such that $\lim _{\mathrm{p} \rightarrow \mathrm{m}} v_{k_{D}}=\mathrm{vk}$. For each natural number $p \in N$, there are non-negativeintegers $u, r \in N \cup\{0\}$ such that $p=(m+1) u+r$ and $0 \leq r<m+$ 1.Now let's define the sequence $\{x p\}$ as follows.
$\mathrm{xp}=\mathrm{v}(\mathrm{r}+1) \mathrm{p}, \mathrm{p}=(\mathrm{m}+1) \mathrm{u}+\mathrm{r}, \mathrm{u}, \mathrm{r} \in \mathrm{N} \cup\{0\}, 0 \leq \mathrm{r}<\mathrm{m}+1$
for each natural number $\mathrm{p} \in \mathrm{N}$. Since $\lim _{\mathrm{p} \rightarrow \infty} v_{k_{D}}=v_{k}$ for each $1 \leq \mathrm{k} \leq \mathrm{m}+1$, we have
$\forall \epsilon>\epsilon_{0}, \exists K \in N$ s.t. $\forall p \geq K_{,} 1 \leq k \leq(m+1) \Rightarrow\left\|v_{k_{p}}-v_{k}\right\| \left\lvert\,<\frac{\varepsilon-\epsilon_{0}}{2}\right.$.
In order to show that $\{\mathrm{xp}\}$ is an ε_{0}-Cauchy sequence, for each positive real number ${ }^{\varepsilon}>\varepsilon_{0}$, let any natural number $\mathrm{p}, \mathrm{q} \geq \mathrm{K}$ be given. Then, by the Euclidean division theorem, we have
$\exists \mathrm{u}, \mathrm{r} \in \mathrm{N} \cup\{0\}$ s.t. $\mathrm{p}=(\mathrm{m}+1) \mathrm{u}+\mathrm{r}$ and $0 \leq \mathrm{r}<\mathrm{m}+1$
and
$\exists \mathrm{t}, \mathrm{s} \in \mathrm{N} \cup\{0\}$ s.t. $\mathrm{q}=(\mathrm{m}+1) \mathrm{t}+\mathrm{s}$ and $0 \leq \mathrm{s}<\mathrm{m}+1$.
Hence we have
$\forall \in>\epsilon_{0}, \exists K \in N$ s.t. $\forall p, q \geq K \Rightarrow| | x_{p}-x_{q} \| \mid$

$<\frac{\epsilon-\epsilon_{0}}{2}+\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}=\epsilon_{x}$
Thus $\{x p\}$ is an ${ }^{\varepsilon_{0}}$-Cauchy sequence in D. And it is obvious that $\operatorname{SSL}(\{x p\})=V$. Hence we have
$\varepsilon_{0}-\lim { }_{p \rightarrow \infty} x_{p}=\bigcap_{\alpha \in V} \bar{B}\left(\alpha_{,}, \varepsilon_{0}\right)=\overline{T_{m}}\left(V, \varepsilon_{0}\right)$.
 ε_{0}-complete. This contradiction completes the proof.
Proposition 2.15. Let $\varepsilon_{0}>0$ be a positive real number. If a subsetD of Rm is not ${ }^{\varepsilon_{0}}$-complete then there is an ε_{0}. Cauchy sequence $\{x p\}$ such that $\operatorname{SSL} \cap B(\gamma, r)=\emptyset, \operatorname{diam}(S S L)=\varepsilon_{0}$ for some vector $\gamma \in R m$ and some positive real number $r>0$. Moreover, SSL satisfies the following condition.
$\forall \alpha \in \operatorname{SSL}, \exists \beta \in \operatorname{SSL}(\{x p\})$ s.t. $\left\|^{\alpha-\beta}\right\|={ }^{\varepsilon_{0}}$.
Proof. Suppose that D is not ${ }^{\varepsilon_{0}}$-complete. Then there exists an ε_{0}-Cauchy sequence $\{x p\}$ in D such that $\mathrm{D} \overbrace{}^{\varepsilon_{0}-\lim }{ }_{p \rightarrow=\infty} x_{p}=\varnothing$. If SSL $\cap \mathrm{D}{ }^{\neq \varnothing}$ then we have
$\varnothing^{F} \mathrm{D} \cap \mathrm{SSL} \subseteq \mathrm{D} \cap\left\{\quad \cap_{\alpha \in S S L} \bar{B}\left(\alpha_{,} \varepsilon_{0}\right) \quad\right\} \subseteq \mathrm{D} \cap \varepsilon_{0}-\lim { }_{p \rightarrow \infty} x_{p}$
This is a contradiction. Since $\operatorname{SSL}(\{x p\}) \subseteq \mathrm{D}$, this contradiction implies that $\operatorname{SSL}(\{\mathrm{xp}\}) \subseteq \subseteq^{v}-D$. But there are elements $\gamma \in \operatorname{Rm}$ and $\mathrm{r}>0$ by proposition 2.7 such that
$\operatorname{hull(SSL}) \cap \mathrm{B}(\gamma, \mathrm{r}){ }_{\varnothing} \mathrm{and}^{\bar{B}}(\gamma, \mathrm{r}) \subseteq \cap_{\alpha \in S s L} \bar{B}\left(\alpha, \varepsilon_{0}\right)$.
And if $\operatorname{SSL} \cap \mathrm{B}(\gamma, \mathrm{r}){ }_{\varnothing}{ }_{\varnothing}$ then there is an element $\alpha 0 \in \mathrm{SSL} \subseteq D^{\prime}-D_{\text {such that }} \alpha 0 \in \mathrm{~B}(\gamma, \mathrm{r})$. Since α_{0} is an accumulation point of D and $B(\gamma, r)$ is an open set, there is an element $x \in D$ such that $x \in B(\gamma, r)$.Hence we have $^{\mathrm{D}} \cap\left\{\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha_{v} \varepsilon_{0}\right)\right\} \neq \emptyset$ which is a contradiction. Thus we have $\operatorname{SSL} \cap \mathrm{B}(\gamma, \mathrm{r})=\varnothing$. Moreover, suppose that there is an element $\alpha 0 \in \operatorname{SSL}(\{x p\})$ such that $\left\|^{\alpha_{0}}-\beta\right\|^{<\varepsilon_{0}}$ for all $\beta \in \operatorname{SSL}(\{x p\})$. Thenwe have
$\max \left\{\left\|\alpha_{0}-\beta\right\| ; \beta \in \operatorname{SSL}\left(\left\{x_{p}\right\}\right)\right\}=r_{0}<\epsilon_{0}$
since the set $\operatorname{SSL}(\{x p\})$ is compact. Then we have
$\alpha_{0} \in B\left(\alpha_{0}, \epsilon_{0}-r_{0}\right) \subseteq \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha_{,}, \epsilon_{0}\right)$.
Since $\alpha 0 \in D^{s}-D$ and $B\left(\alpha_{0}, \varepsilon_{0}-r_{0}\right)$ is an open set containing $\alpha 0$, we have $\mathrm{D} \cap \mathrm{B}\left(\alpha_{0}, \varepsilon_{0}-r_{0}\right) \neq \emptyset$. This is a contradiction as the above. Thus we have
$\forall \alpha \in \operatorname{SSL}, \exists \beta \in \operatorname{SSL}(\{x p\})$ s.t. $\left\|^{\alpha-\beta}\right\|=\varepsilon_{0}$.
Since the diameter of SSL is not greater than ${ }^{\varepsilon_{0}}$, this implies that $\operatorname{diam}(S S L)=\varepsilon_{0}$.
Theorem 2.16Let ${ }^{\varepsilon_{0}}>{ }^{0}$ be a positive real number and D be a subset of $R m$. Then D is not ${ }^{\varepsilon_{0}}$-complete if and only if there is a compact subset S of $D^{\prime}-D_{\text {such that }} \operatorname{diam}^{\operatorname{dia}}=\varepsilon_{0 \text { and }} \mathrm{D} \cap\left\{\cap_{\alpha \in S} \bar{B}\left(\alpha, \varepsilon_{0}\right)\right\}$.
Proof. (\Rightarrow) Suppose that D is not ε_{0}-complete. Then there is an ε_{0}-Cauchy sequence $\{x p\}$ such that $\mathrm{D} \cap \varepsilon_{0}-\lim x_{p \rightarrow \infty} x_{p}=\varnothing$. By the propositionjust above, we have $\operatorname{SSL}(\{x p\}) \subseteq D^{v}-D$ $\operatorname{and}^{\operatorname{diam}}\left(\operatorname{SSL}\left(\left\{x_{p}\right\}\right)\right)=\varepsilon_{0}$.Now put $S=\operatorname{SSL}(\{x p\})$. Then S is compact by lemma 1.3. And $\operatorname{diam}(S)=\varepsilon_{0}$ and S $\subseteq \subseteq^{s}-D_{\text {by the proposition just above. Moreover, }}$
$\mathrm{D} \bigcap_{\alpha \in S} \bar{B}\left(\alpha_{,}, \epsilon_{0}\right)=D \cap\left\{\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha_{,}, \epsilon_{0}\right)\right\}=\emptyset$
since $\cap_{\alpha \in \operatorname{ssL}\left(\left[x_{p}\right]\right)} \bar{B}\left(\alpha_{,}, \varepsilon_{0}\right)=\varepsilon_{0}-\lim p_{p \rightarrow \infty} x_{p}(\vDash)$ Suppose that there is a compact subset S of $D^{\prime}-D_{\text {such that }}$ $\mathrm{D} \cap\left\{\bigcap_{\propto \in S} \bar{B}\left(\alpha_{,} \varepsilon_{0}\right)\right\}=\emptyset$ and $\operatorname{diam}(S)=\varepsilon_{0}$. We can write as $S=\{\mathrm{sj}: j \in \mathrm{~J}\}$ for some index set J. Since $S \subseteq D^{p}-D$, for each $\mathrm{j} \in \mathrm{J}$, there is a single-valued sequence ${\left\{\mathrm{x}_{\mathrm{i}_{D}}\right\}}$ in D such that $\|^{x_{j_{D}}-s_{j} \|<\frac{1}{p}}$ for each $\mathrm{p} \in \mathrm{N}$. In order to prove that D is not ${ }^{\varepsilon_{0}}$-complete, let's choose a multi-valued sequence $\{x p\}$ so that $x p=\left\{{ }^{x_{1_{D}}}: j \in J\right\}$ for each $p \in N$. In order to show that $\{x p\}$ is an ε_{0}-Cauchy sequence, let any positive real number ${ }^{\varepsilon}>\varepsilon_{0}$ be given. Choosing a natural number $K \in N$ so large that $K>\frac{2}{\varepsilon-\varepsilon_{0}}$, we have, since $\left\|^{s_{j}-s_{k} \|}\right\| \leq \varepsilon_{0}$ for all $j, k \in J$,
$\forall \varepsilon>\varepsilon_{0}, \exists K \in N$ s.t. $(\forall p, q) p, q \geq K, \forall x_{j_{p}} \in x_{p}, \forall x_{j_{q}} \in x_{q}$
$\Rightarrow\left|\left|\mathrm{X}_{\mathrm{i}_{D}}-x_{k_{\mathrm{k}_{q}}}\right|\right| \leq\left|\left|\mathrm{X}_{\mathrm{i}_{\mathrm{D}}}-s_{j}\right|\right|+\left|\left|s_{j}-s_{k} \|\left|+\left|\left|s_{k}-\mathrm{x}_{\mathrm{k}_{\mathrm{q}}}\right|\right|\right.\right.\right.$
$\leq \frac{1}{p}+\epsilon_{0}+\frac{1}{q} \leq \frac{2}{K}+\epsilon_{0}<\epsilon-\epsilon_{0}+\epsilon_{0}=\epsilon$.
Therefore, the sequence $\{x p\}$ is an ${ }^{\varepsilon_{0}}$-Cauchy sequence in D. Since the limit of the sub-sequential limits is also a sub-sequential limit, we haveSSL $(\{x p\})=\bar{S}$. But ${ }^{\bar{S}}=$ S since S is closed. Thus $\operatorname{SSL}(\{x p\})=$ S. Finally, we have
$\left.\left.D \cap\left\{\bigcap_{\alpha \in S S L} \overline{\{ } \bar{x}\left(x_{p}\right]\right)<\alpha_{0}, \epsilon_{0}\right)\right\}=D \cap\left\{\bigcap_{\alpha \in S} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=\emptyset$
by the assumption. Consequently, D is not 0 -complete.
Definition 2.17. Let D be a subset of Rm and $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{Rn}$ be a multi-valued function. We define thatf is ε_{0}-uniformly continuous onD if and only if we have
$\forall \varepsilon>\varepsilon_{0}, \exists \delta>0$ s.t. $(\forall x, y \in D)\|x-y\|<\delta, \forall f(x), \forall f(y) \Rightarrow{ }_{\|} f(x)-f(y) \|^{\varepsilon} \varepsilon^{*}$
Proposition 2.18. (Criterion) Let $\mathrm{f}: \mathrm{D} \rightarrow$ Rn be a multi-valued function defined on a bounded subset D of Rm . Then
f is ε_{0}-uniformly continuous on D if and only if $\{f(x p)\}$ is an ε_{0}-Cauchy sequence in $R n$ for every 0 -Cauchy sequence $\{x p\}$ on D.
Proof. (\Rightarrow) Suppose thatf is ε_{0}-uniformly continuous on D and any0-Cauchy sequence $\{x n\}$ on D be given. Then we have

$$
\forall \varepsilon>\varepsilon_{0}, \exists \delta>0 \text { s.t. }(\forall x, y \in D)\|x-y\|<\delta, \forall f(x), \forall f(y) \Rightarrow\|f(x)-f(y)\|<\varepsilon_{x}
$$

Since $\{x n\}$ is a 0 -Cauchy sequence, we have
$\exists K \in N, s . t .(\forall p, q \in N) p, q \geq K, \forall x(p), \forall x(q) \Rightarrow\|x(p)-x(q)\|<\delta$.
Hence we have
$\forall \varepsilon>\varepsilon_{0}, \exists K \in N$ s.t. $(\forall p, q \in N) p, q \geq K, \forall f\left(x_{p}\right), \forall f\left(x_{q}\right) \Rightarrow\left\|f\left(x_{p}\right)-f\left(x_{q}\right)\right\| \varepsilon_{x}$
Thus $\{\mathrm{f}(\mathrm{xp})\}$ is an ${ }^{\varepsilon_{0}}$-Cauchy sequence in $\mathrm{Rn} .(\vDash)$ Suppose that f is not ${ }^{\varepsilon_{0}}$-uniformly continuous on D . Then we have
$\exists \varepsilon_{1}>\varepsilon_{0}$ s.t. $\quad\left\{\forall \delta>0, \exists \mathrm{x} \delta, \mathrm{y} \delta \in \mathrm{D}, \exists \mathrm{f}(\mathrm{x} \delta), \mathrm{f}(\mathrm{y} \delta) \in \mathrm{Rn}^{\text {s.t. }}\left\|\mathrm{x}_{8}-\mathrm{y}_{8}\right\|<\delta_{v}\left\|\mathrm{f}\left(\mathrm{x}_{0}\right)-\mathrm{f}\left(\mathrm{y}_{8}\right)\right\| \geq \varepsilon_{1}\right\}$.
Choosing ${ }^{\delta}=\frac{1}{p}$ for each natural number $p \in N$, we have

$$
\exists\{x p\},\{y p\} \subseteq D \quad \wedge \exists\{f(x p)\},\{f(y p)\} \subseteq \text { Rnsuch that }\left|\mid x_{p}-y_{p} \|<\frac{1}{p} \text { and }\left\|f\left(x_{8}\right)-f\left(y_{8}\right)\right\| \geq \varepsilon_{1} .\right.
$$

Since $\{x p\}$ and $\{y p\}$ are bounded sequences in a bounded subset D and the closure D is compact, we may assume that $\lim _{\mathrm{p} \rightarrow \mathrm{m}} x_{\mathrm{p}}=\lim _{\mathrm{p} \rightarrow \mathrm{m}} y_{p}=\alpha$ forsome $\alpha \in \mathrm{D}$ by choosing the single-valued and convergent subsequences. Now define a sequence $\{\mathrm{zp}\}$ by $\mathrm{z} 2 \mathrm{p}-1=$ xpand $\mathrm{z} 2 \mathrm{p}=$ ypfor each natural number $\mathrm{p} \in \mathrm{N}$. Then $\lim _{\mathrm{p} \rightarrow \infty} z_{p}=\alpha$ and $\{z p\}$ is a 0 -Cauchy sequence in D. But we have
$\left|\left|f\left(z_{2 p-1}\right)-f\left(z_{2 p}\right)\left\|=| | f\left(x_{p}\right)-f\left(y_{p}\right)\right\| \geq E_{1}\right.\right.$
for all $\mathrm{p} \in \mathrm{N}$. Hence $\{\mathrm{f}(\mathrm{zp})\}$ is not an ε_{0}-Cauchy sequence. This contradiction implies the ${ }^{\varepsilon_{0}}$-uniform continuity of f on D .
Theorem 2.19. Let $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{Rn}$ be a multi-valued function defined on a 0 - complete subset D of Rm . If f is $\varepsilon_{0_{0}}$ uniformly continuous on D then, for every 0 -Cauchy sequence $\{x p\}$ on D, there is an element $\alpha \in D$ such that ${ }^{\left[f\left(x_{p}\right)\right\}}$ is ε_{0}-convergent to $\mathrm{f}(\alpha) \in \mathrm{f}(\mathrm{D})$.
Proof. Let any 0-Cauchy sequence $\{x p\}$ on D be given. Since $f(x)$ is ε_{0}-uniformly continuous on D, we have

$$
\forall \varepsilon>\varepsilon_{0}, \exists \delta>0 \text { s.t. } \quad(\forall \mathrm{x}, \mathrm{y} \in \mathrm{D})\|\mathrm{x}-\mathrm{y}\|<\delta, \forall \mathrm{f}(\mathrm{x}), \forall \mathrm{f}(\mathrm{y}) \Rightarrow\|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})\|<\varepsilon_{\mathrm{x}}
$$

But we have $0-\operatorname{limxp}=\{\alpha\}$ for some $\alpha \in \mathrm{D}$ since D is 0 -complete. Hence we have
$\exists K \in N$ s.t. $\forall p \geq K, \forall x p \Rightarrow\|x p-\alpha\|<\delta$.
Hence we have
$\forall \varepsilon>\varepsilon_{0}, \exists K \in N_{\text {s.t. }} \forall \mathrm{p} \geq \mathrm{K}, \forall \mathrm{f}(\mathrm{xp}), \forall \mathrm{f}(\alpha) \Rightarrow\left\|\mathrm{f}\left(x_{p}\right)-f(\alpha)\right\|<\varepsilon$.
Thus we have $f(\alpha) \in \varepsilon_{0}-\lim f_{p \rightarrow \infty} f\left(x_{p}\right)$ for all values of $f(\alpha)$. Since $f(\alpha) \in f(D)$ for all values of $f(\alpha)$, the sequence $\{f(x p)\}$ is an ${ }^{\varepsilon_{0}}$-convergent sequence of $f(D)$.

III. REFERENCE

[1] R. G. Bartle, The Elements of Real Analysis, John Willey and Sons (1964).
[2] D. L. Cohn, Measure Theory, Berkhauser Boston. (1980).
[3] B. H. Kang, An Introduction to ${ }^{\varepsilon_{0}}$-Density and ${ }^{E_{0}}$-Dense Ace, JCMS vol31.(2018.2)
[4] H. L. Royden, Real Analysis, Macmillan pub. co. (1968).
[5] W. Rudin, Principles of Mathematical Analysis, McGraw Hill (1964).

