
Three Phase Coordinated Checkpointing Scheme for
Mobile Distributed Systems

1Monika Nagpal, 2Parveen Kumar

 & 3Surender Jangra

1Research Scholar, Dept. of CSE, Singhania University, Pacheri Bari, Jhunjhunu(Raj.)

2Professor, Bharat Institute of Engineering & Technology, Meerut (UP)
3Associate Professor, Deptt. of IT Engg., HCTM, Kaithal(Haryana)

Abstract: In this paper, a three phase minimum-process coordinated checkpointing algorithm for non-
deterministic mobile distributed systems is proposed, where no useless checkpoints are taken. An effort has been
made to minimize the blocking of processes and synchronization message overhead and to capture the partial
transitive dependencies during the normal execution by piggybacking dependency vectors onto computation
messages. Frequent aborts of checkpointing procedure may happen in mobile systems due to exhausted battery,
non-voluntary disconnections of MHs, or poor wireless connectivity. Therefore, in the proposed scheme, all
concerned MHs will take ad-hoc checkpoint only and these checkpoint is stored on the memory of MH only. In this
case, if some process fails to take checkpoint in the first phase, then MHs need to abort their ad-hoc checkpoints
only. In this way, we try to minimize the loss of checkpointing effort when any process fails to take its checkpoint
in coordination with others.

Keyword--Checkpointing, Ad-hoc checkpoint, Mobile Host, Mobile Support System

I. INTRODUCTION

Most of the existing coordinated checkpointing algorithms [1-3],[6],[9] rely on the two-phase protocol and save
two kinds of checkpoints on the stable storage: tentative and permanent. In the first phase, the initiator process
takes a tentative checkpoint and requests all or selective processes to take their tentative checkpoints. If all
processes are asked to take their checkpoints, it is called all-process coordinated checkpointing [1],[5],[9].
Alternatively, if selective communicating processes are required to take checkpoints, it is called minimum-process
checkpointing [6]. Each process informs the initiator whether it succeeded in taking a tentative checkpoint. After
the initiator has received positive acknowledgments from all relevant processes, the algorithm enters the second
phase. Alternatively, if a process fails to take its tentative checkpoint in the first phase, the initiator process
requests all or concerned processes to abort their tentative checkpoint.

If the initiator learns that all concerned processes have successfully taken their tentative checkpoints, the
algorithm enters in the second phase and the initiator asks the relevant processes to make their tentative
checkpoints permanent. In order to record a consistent global checkpoint, when a process takes a checkpoint, it
asks (by sending checkpoint requests to) all relevant processes to take checkpoints. Therefore, coordinated
checkpointing suffers from high overhead associated with the checkpointing process [7], [11], [14-15]. Much of
the previous work [4],[7-8],[11-12],[14-15] in coordinated checkpointing has focused on minimizing the number
of synchronization messages and the number of checkpoints during the checkpointing process. However, some
algorithms (called blocking algorithm) force all relevant processes in the system to block their computations
during the checkpointing process [7-8], [11-15]. Checkpointing includes the time to trace the dependency tree and
to save the states of processes on the stable storage, which may be long. Moreover, in mobile computing systems,
due to the mobility of MHs, a message may be routed several times before reaching its destination. Therefore,
blocking algorithms may dramatically reduce the performance of these systems [5]. Recently, non-blocking
algorithms [5],[9] have received considerable attention. In these algorithms, processes need not block during the
checkpointing by using a checkpointing sequence number to identify orphan messages. Moreover, these
algorithms [5], [9] require all processes in the system to take checkpoints during checkpointing, even though many
of them may not be necessary.

In this paper, we propose an efficient checkpointing algorithm for mobile computing systems that forces only a
minimum number of processes to take checkpoints. An effort has been made to minimize the blocking of
processes and synchronization message overhead. We capture the partial transitive dependencies during the
normal execution by piggybacking dependency vectors onto computation messages. The Z-dependencies are well
taken care of in this protocol. In order to reduce the message overhead, we also avoid collecting dependency
vectors of all processes to find the minimum set as in [8], [10-11]. We also try to minimize the loss of
checkpointing effort when any process fails to take its checkpoint.

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

II SYSTEM MODEL
A distributed system consists of a fixed number of processes, P1 , P2 , P3 , …. Pn , which communicate only
through messages. Processes cooperate to execute a distributed application and interact with the outside world by
receiving and sending input and output messages, respectively. Fig. 1 shows a system consisting of three
processes and interactions with the outside world.

Fig. 1 Model of Distributed System

Rollback-recovery protocols generally make assumptions about the reliability of the inter-process communication.
Some protocols assume that the communication subsystem delivers messages reliably, in first-in-first-out (FIFO)
order, while other protocols assume that the communication subsystem can lose, duplicate, or reorder messages.
The choice between these two assumptions usually affects the complexity of checkpointing and failure recovery.
A generic correctness condition for rollback-recovery can be defined as follows : “a system recovers correctly if
its internal state is consistent with the observable behavior of the system before the failure.” Rollback-recovery
protocols therefore must maintain information about the internal interactions among processes and also the
external interactions with the outside world.

In distributed systems, all processes save their local states at certain instants of time. This saved state is known as
a local checkpoint. A local checkpoint is a snapshot of the state of the process at a given instance and the event of
recording the state of a process is called local checkpointing. The contents of a checkpoint depend upon the
application context and the checkpointing method being used. Depending upon the checkpointing method used, a
process may keep several local checkpoints or just a single checkpoint at any time. By periodically invoking the
checkpointing process, one can save the status of a program at regular intervals. If there is a failure one may
restart computation from the last checkpoint thereby avoiding repeating computations from the beginning. The
process of resuming computation by rolling back to a saved state is called rollback recovery.

Proposed system model consists of a number of MHs which communicate through mobility support stations
(MSSs). Each MSS is a fixed network host which provides wireless communication support for a fixed
geographical area, called a cell. MSSs are linked together over the wired data networks. The distributed system
consisting of n processes, running on MHs or MSSs. The MHs can communicate with the MSS through wireless
channels. We assume that wireless channels and logical channels are all FIFO order. If a MH moves to the cell of
another base station, a wireless channel to the old MSS is disconnected and a wireless channel in the new MSS is
allocated. However, its checkpoint related information is still with the old MSS. A MH may voluntarily
disconnect from mobile computing networks. The MH does not send and receive any message when it is in a
disconnected state. We also assume a closed system that consists of nodes, links, and disks. Input is stored on disk
before operation begins. Output is stored on disk when the job ends.

There is no common clock, shared memory or central coordinator. Message passing is the only mode of
communication between any pair of processes. The messages originated from a source Mh, are received by the
local Mobile support stations and then forwarded to the destination MH. Any process can initiate checkpointing.
It is assumed that processes may be failed during processing but there is no communication link failure. Messages
are exchanged with finite but arbitrary delays. In our algorithm, we consider that the processes which are running
in the distributed mobile systems are non-deterministic.

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

IV. BASIC IDEA

All Communications to and from MH pass through its local MSS. The MSS maintains the dependency
information of the MHs which are in its cell. The dependency information is kept in Boolean vector Ri for process
Pi. The vector has n bits for n processes. When Ri[j] is set to 1, it represents Pi depends upon Pj. For every Pi, Ri is
initialized to 0 except Ri[i], which is initialized to l. When a process Pi running on an MH, say MHp, receives a
message from a process Pj, MHp's local MSS should set Ri[j] to 1.If Pj has taken its permanent checkpoint after
sending m, Ri[j] is not updated.

Suppose there are processes Pi and Pj running on MHs, MHi and MHj with dependency vectors Ri and Rj. The
dependency vectors of MHs, MHi and MHj are maintained by their local MSSs, MSSi and MSSj. Process Pi
running on MHi sends message m to process Pj running on MHj. The message is first sent to MSSi (local MSS of
MHi). MSSi maintains the dependency vector Ri of MHi. MSSi appends Ri with message m and sends it to MSSj

(local MSS of MHj). MSSj maintains the dependency vector Rj of MHj. MSSj replaces Rj with bitwise logical OR
of dependency vectors Ri and Rj and sends m to Pj.

In Fig. 2, there are five processes P1, P2, P3, P4, P5 with dependency vectors R1, R2, R3, R4, R5 initialized to 00001,
00010, 00100, 01000, and 10000 respectively. Initially, every process depends upon itself. Now process P1 sends
m to P2. P1 appends R1 with m. P2 replaces R2 with the bitwise logical OR of R1(00001) and R2(00010), which
comes out to be (00011). Now P2 sends m2 to P3 and appends R2 (00011) with m2. Before receiving m2, the value
of R3 at P3 was 00100. After receiving m2, P3 replaces R3 with the bitwise logical OR of R2 (00011) and R3
(00100) and R3 becomes (00111). Now P4 sends m3 along with R4 (01000) to P5. After receiving m3, R5 becomes
(11000).In this case, if P3 starts checkpointing at t1, it will compute the tentative minimum set equivalent to
R3(00111), which comes out to be {P1, P2, P3}. In this way, partial transitive dependencies are captured during
normal computations.

In coordinated checkpointing, if a single process fails to take its checkpoint; all the checkpointing effort goes
waste, because, each process has to abort its tentative checkpoint [4, 8, 10, 11, 13, 15]. Furthermore, in order to
take the tentative checkpoint, an MH needs to transfer large checkpoint data to its local MSS over wireless
channels. Hence, the loss of checkpointing effort may be exceedingly high due to frequent aborts of checkpointing
algorithms especially in mobile systems. In mobile distributed systems, there remain certain issues like: abrupt
disconnection, exhausted battery power, or failure in wireless bandwidth. So there remains a good probability that
some MH may fail to take its checkpoint in coordination with others. Therefore, we propose that, in the first
phase, all processes in the minimum set, take ad hoc checkpoint only. Ad hoc checkpoint is stored on the memory
of MH only. If some process fails to take its checkpoint in the first phase, then other MHs need to abort their ad
hoc checkpoints only. The effort of taking an ad hoc checkpoint is negligible as compared to the tentative one. In
other protocols [4],[8],[10], [11], [13],[15], all concerned processes need to abort their tentative checkpoints in
this situation. Hence the loss of checkpointing effort in case of an abort of the checkpointing procedure is
dramatically low in the proposed scheme as compared to other coordinated checkpointing schemes for mobile
distributed systems.

In this second phase, a process converts its ad hoc checkpoint into tentative one. By using this scheme, we try to
minimize the loss of checkpointing effort in case of abort of checkpointing algorithm in the first phase. A non-
blocking checkpointing algorithm does not require any process to suspend its underlying computation. When
processes do not suspend their computation, it is possible for a process to receive a computation message from
another process, which is already running in a new checkpointing interval. If this situation is not properly dealt
with, it may result in an inconsistency. During the checkpointing procedure, a process Pi may receive m from Pj

P1

P2

P3

P4

P5

m.00001

m2.00011

m3.01000

t1

t2

Fig. 2 Maintenance of Dependency Vectors

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

such that Pj has taken its checkpoint for the current initiation whereas Pi has not. Suppose, Pi processes m, and it
receives checkpoint request later on, and then it takes its checkpoint. In that case, m will become orphan in the
recorded global state. We propose that only those messages, which can become orphan, should be buffered at the
sender’s end. When a process takes its ad hoc checkpoint, it is not allowed to send any message till it receives the
tentative checkpoint request. However, in this duration, the process is allowed to perform its normal computations
and receive the messages. When a process receives the tentative checkpoint request, it is confirmed that every
concerned process has taken its ad hoc checkpoint. Hence, a message generated for sending by a process after
getting tentative checkpoint request cannot become orphan. Hence, a process can send the buffered messages after
getting the tentative checkpoint request from the initiator.

V. PHASES OF PROPOSED ALGORITHM
A. First phase of the algorithm

When a process, say Pi, running on an MH, say MHi, initiates a checkpointing, it sends a checkpoint initiation
request to its local MSS, which will be the proxy MSS (if the initiator runs on an MSS, then the MSS is the proxy
MSS). The proxy MSS maintains the dependency vector of Pi say Ri. On the basis of Ri, the set of dependent
processes of Pi is formed, say Sminset. The proxy MSS broadcasts ckpt (Sminset) to all MSSs. When an MSS receive
ckpt (Sminset) message, it checks, if any processes in Sminset are in its cell. If so, the MSS sends ad hoc checkpoint
request message to them. Any process receiving a ad hoc checkpoint request takes a ad hoc checkpoint and sends
a response to its local MSS. After an MSS received all response messages from the processes to which it sent ad
hoc checkpoint request messages, it sends a response to the proxy MSS. It should be noted that in the first phase,
all processes take the ad hoc checkpoints. For a process running on a static host, ad hoc checkpoint is equivalent to
tentative checkpoint. But, for an MH, ad hoc checkpoint is different from tentative checkpoint. In order to take a
tentative checkpoint, an MH has to record its local state and has to transfer it to its local MSS. But, the ad hoc
checkpoint is stored on the local disk of the MH. It should be noted that the effort of taking a ad hoc checkpoint is
very small as compared to the tentative one. For a disconnected MH that is a member of minimum set, the MSS
that has its disconnected checkpoint, considers its disconnected checkpoint as the required come.
B. Second Phase of the Algorithm

After the proxy MSS has received the response from every MSS, the algorithm enters the second phase. If the
proxy MSS learns that all relevant processes have taken their ad hoc checkpoints successfully, it asks them to
convert their ad hoc checkpoints into tentative ones and also sends the exact minimum set along with this request.
Alternatively, if initiator MSS comes to know that some process has failed to take its checkpoint in the first phase,
it issues abort request to all MSS. In this way the MHs need to abort only the ad hoc checkpoints, and not the
tentative ones. In this way we try to reduce the loss of checkpointing effort in case of abort of checkpointing
algorithm in first phase.

When an MSS receives the tentative checkpoint request, it asks all the process in the minimum set, which are also
running in itself, to convert their ad hoc checkpoints into tentative ones. When an MSS learns that all relevant
process in its cell have taken their tentative checkpoints successfully, it sends response to proxy MSS. If any MH
fails to transfer its checkpoint data to its local MSS, then the failure response is sent to the proxy MSS; which in
turn, issues the abort message.

C. Third Phase of the Algorithm

Finally, when the proxy MSS learns that all processes in the minimum set have taken their tentative checkpoints
successfully, it issues commit request to all MSSs. When a process in the minimum set gets the commit request, it
converts its tentative checkpoint into permanent one and discards its earlier permanent checkpoint, if any.

VI. MASSAGE HANDLING DURING CHECKPOINTING

When a process takes its ad hoc checkpoint, it does not send any massage till it receives the tentative checkpoint
request. This time duration of a process is called its uncertainty period. Suppose, Pi sends m to Pj after taking its
ad hoc checkpoint and Pj has not taken its ad hoc checkpoint at the time of receiving m. In this case, if Pj takes its
ad hoc checkpoint after processing m, then m will become orphan. Therefore, we do not allow Pi to send any
massage unless and until every process in the minimum set have taken its ad hoc checkpoint in the first phase. Pi
can send massages when it receives the tentative checkpoint request; because, at this moment every concerned
process has taken its ad hoc checkpoint and m cannot become orphan. The massages to be sent are buffered at
senders end. In this duration, a process is allowed to continue its normal computations and receive massages.

Suppose, Pj gets the ad hoc checkpoint request at MSSp. Now, we find any process Pk such that Pk does not
belong to Sminset and Pk belongs to Rj[]. In this case, Pk is also included in the minimum set; and Pj sends ad hoc
checkpoint request to Pk. It should be noted that the Sminset, computed on the basis of dependency vector of

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

initiator process is only a subset of the minimum set. Due to zigzag dependencies, initiator process may be
transitively dependent upon some more processes which are not included in the Sminset computed initially.

The proposed Algorithm can be better understood by the example shown in Fig. 3. There are six processes (P0 to
P5) denoted by straight lines. Each process is assumed to have initial permanent checkpoints with csn equal to
“0”. Cix denotes the xth checkpoints of Pi. Initial dependency vectors of P0, P1, P2, P3, P4, P5 are [000001],
[000010] [000100], [001000], [010000], and [100000], respectively. P0 sends m2 to P1 along with its dependency
vector [000001]. When P1 receives m2, it computes its dependency vector by taking bitwise logical OR of
dependency vectors of P0 and P1, which comes out to be [000011]. Similarly, P2 updates its dependency vector
on receiving m3 and it comes out to be [000111]. At time t1, P2 initiates checkpointing algorithm with its
dependency vector is [000111]. At time t1, P2 finds that it is transitively dependent upon P0 and P1. Therefore,
P2 computes the tentative minimum set [Sminset= {P0, P1, P2}]. P2 sends the ad hoc checkpoint request to P1
and P0 and takes its own ad hoc checkpoint C21. For an MH the ad hoc checkpoint is stored on the disk of MH. It
should be noted that Sminset is only a subset of the minimum set. When P1 takes its ad hoc checkpoint C11, it
finds that it is dependent upon P3 due to m4, but P3 is not a member of Sminset; therefore, P1 sends ad hoc
checkpoint request to P3. Consequently, P3 takes its ad hoc checkpoint C31.

After taking its ad hoc checkpoint C21, P2 generates m8 for P3. As P2 has already taken its ad hoc checkpoint for
the current initiation and it has not received the tentative checkpoint request from the initiator; therefore P2 buffers
m8 on its local disk. We define this duration as the uncertainty period of a process during which a process is not
allowed to send any massage. The massages generated for sending are buffered at the local disk of the sender’s
process. P2 can sends m8 only after getting tentative checkpoint request or abort massages from the initiator
process. Similarly, after taking its ad hoc checkpoint P0 buffers m10 for its uncertainty period. It should be noted
that P1 receives m10 only after taking its ad hoc checkpoint. Similarly, P3 receives m8 only after taking its ad hoc
checkpoint C31.A process is allowed to receive all the massages during its uncertainty period; for example, P3
receives m11. A process is also allowed to perform its normal computations during its uncertainty period.

At time t2, P2 receives responses to ad hoc checkpoints requests from all process in the minimum set (not shown
in the Fig 3) and finds that they have taken their ad hoc checkpoints successfully, therefore, P2 issues tentative
checkpoint request to all processes. On getting tentative checkpoint request, processess in the minimum set [P0,
P1, P2, P3] convert their ad hoc checkpoints into tentative ones and send the response to initiator process P2;
these process also send the massages, buffered at their local disks, to the destination processes For example, P0
sends m10 to P1 after getting tentative checkpoint request [not shown in the figure]. Similarly, P2 sends m8 to P3
after getting tentative checkpoint request. At time t3, P2 receives responses from the process in minimum set [not
shown in the figure] and finds that they have taken their tentative checkpoints successfully, therefore, P2 issues

m2.[000001]

t2
t1

P0

P1

P2

P3

P4

Tentative Checkpoint Permanent Checkpoint

Checkpoint/commit request Computation message

Mutable checkpoint

P5
m7.0

m3.[000011]

m6.[100000]

C21[000111]]

C11

C01

C31

m11.0

C50

C30

m4.[001000]

t3

C40

C20

C10

C00

 Message buffered at sender’s

m1.[010000]

m8.1

m10.1

m0.0

Fig. 3 Working Example of Proposed Scheme

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

commit request to all process. A process in the minimum set converts its tentative checkpoint into permanent
checkpoint and discards it old permanent checkpoint if any.

VII. CORRECTNESS PROOF BY CONTRADICTION

We can show that global state, collected by the proposed protocol in will be consistent. We can prove the result
by contradiction. Suppose there is some orphan message in the recorded global state. We explore different
possibilities with the help of Fig 3 Suppose, P0 sends m10 after taking its ad hoc checkpoint and P1 receives m10
before taking its ad hoc checkpoint. This situation is not possible, because, after taking its ad hoc checkpoint P0
comes into its uncertainty period and it cannot send any message unless and until it receives the tentative
checkpoint request. P2 can issue the tentative checkpoint request only after getting confirmed that every concerned
process (including P1) has taken its ad hoc check point. Hence P1 cannot receive m10 before taking its ad hoc
checkpoint C11. Suppose, P5 sends m13 to P3 after C50 and P3 gets m13 before C31 (not show in the Fig. 2). In this
case, when P3 takes its ad hoc checkpoint C31, it will find that P5 does not belong to Sminset and P3 is dependent
upon P5; therefore, P3 will send ad hoc checkpoint request to P5 and send (m13) will also be included in the global
state.

VIII. PERFORMANCE ANALYSIS

We use following notations to compare proposed algorithm with other algorithms:
Nmss: number of MSSs.
Nmh: number of MHs.
Cpp: cost of sending a message from one process to another
Cst: cost of sending a message between any two MSSs.
Cwl: cost of sending a message from an MH to its local MSS (or vice versa).
Cbroadcast: cost of broadcasting a message over static network.
Csearch: cost incurred to locate an MH and forward a message to its current local MSS, from a source
 MSS.
Tst: average message delay in static network.
Twl: average message delay in the wireless network.
Tch: average delay to save a checkpoint on the stable storage. It also includes the time to transfer the
checkpoint from an MH to its local MSS.
N: total number of processes
Nmin: number of minimum processes required to take checkpoints.
Nmut: number of useless mutable checkpoints [4].
Tsearch: average delay incurred to locate an MH and forward a message to its current local MSS.
Nucr: average number of useless checkpoint requests in [4].
Ndep: average number of processes on which a process depends.
h1 : height of the checkpointing tree in Koo-Toueg algorithm [6].
h2 : height of the checkpointing tree in the proposed algorithm.

A. Message Overhead of the Proposed Algorithm
a) Message overhead in the first phase:

i) Initiator process sends ad hoc checkpoint request to the local MSS and (say MSSin) and gets
response from the MSSin: 2 Cwl

ii) MSS in broadcasts ad hoc checkpoint request over the static network: Cbroadcast
iii) We suppose that all the process are running on MHs.
iv) All the process in the minimum set get the ad hoc checkpoint request from the local MSS and sends

response to the local MSS: 2*Nmin*Cwl
v) Every MSS sends response to MSSin: Nmss*Cst

b) Message overhead in the second phase
i) MSSin broadcasts tentative checkpoint request over static network:Cbroadcast
ii) Every process in the minimum set receives tentative checkpoint request, and sends response to these

requests to local MSS: 2*Nmin*Cwl
iii) Every MSS sends response to MSSin: Nmss*Cst

c) Message overhead in the third phase
i) MSSin broadcasts commit request over static network: Cbroadcast
ii) Total Average message overhead: 2Cwl+3 Cbroadcast +4*Nmin*Cwl + 2*Nmss*Cst

Proposed algorithm is a three phase algorithm; therefore it suffers from extra message overhead of Cbroadcast
+4*Nmin*Cwl. By doing so, we are able to reduce the loss of checkpointing effort in case of abort of the

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

checkpointing procedure in the first phase. In other algorithms [4, 6, 8], in case of abort in the first phase, all
concerned processes are forced to abort their tentative checkpoint whereas in the proposed scheme, all relevant
processes abort their ad hoc checkpoints only. The effort of taking an ad hoc checkpoint is negligible as compared
to tentative one in the mobile distributed system [4]. Frequent abort of checkpointing algorithms, due to exhausted
battery power, abrupt disconnections etc., may significantly increase the checkpointing overhead in two-phase
algorithms [4],[8],[10], [11], [13],[15]. We try to minimize the same by designing the three phase algorithm.

In proposed algorithm, only minimum number of processes is required to take their checkpoints. The blocking
time of the Koo-Toueg [6] protocol is highest, followed by Cao-Singhal [4] algorithm. We claim that the blocking
time in the proposed scheme will be significantly smaller as compared to the KT Algorithm [6]. Because, in
algorithm [6], transitive dependencies are collected by direct dependencies. The checkpoint initiator process, say
Pin, sends the checkpoint request to any process Pi if Pin is causally dependent upon Pi. Similarly, Pi sends the
checkpoint request to any process Pj if Pi is causally dependent upon Pj. In this way, a checkpointing tree is
formed. In the proposed algorithm, transitive dependencies are captured during normal execution as described in
Section 3.3. Some zigzag dependencies may not be captured in the proposed scheme during normal execution and
they may form low order checkpointing tree in some typical situations. But, in general, the checkpointing tree
formed in the proposed scheme will be negligibly small as compared to KT algorithm [6] and hence the blocking
time of processes will be small in the proposed scheme as compared to KT algorithm [6]. Furthermore, in the
proposed scheme, a process is blocked when it takes its ad hoc checkpoint and it waits for the other concerned
process to take their ad hoc checkpoints to come out of blocking state. In KT algorithm [6], a process is blocked
when it takes its tentative checkpoint and it waits for the other concerned process to take their tentative
checkpoints to come out of blocking state. In mobile distributed systems, the time to take an ad-hoc checkpoint
may be negligibly small as compared to tentative checkpoint.

Table 1 A Comparison of System Performance

Hence, in the proposed scheme, the blocking period of a process will be significantly small as compared to the
KT algorithm [6]. Proposed blocking period is larger than CS algorithm [8], but it suffers from extra message
overhead of collecting dependency vectors from all processes and moreover, it forces all the processes to block for
a short duration. In proposed scheme, a process is blocked only if it is a member of the minimum set. Furthermore,
a process is allowed to perform its normal computations and receive messages during its blocking period.
 In the algorithms proposed in [4],[10],[13], no blocking of processes takes place, but some useless checkpoints
are taken, which are discarded on commit. In Elnozahy et al [5] algorithm, all processes take checkpoints. In the
protocols [6], [8], and in the proposed one, only minimum numbers of processes record their checkpoints. In
algorithm [4], concurrent executions of the algorithm are allowed, but it may lead to inconsistencies in doing so
[16]. We avoid the concurrent executions of the proposed algorithm..

IX. CONCLUSION
Proposed minimum-process synchronous checkpointing algorithm for mobile system try to minimize the blocking
of processes during checkpointing. The blocking time of a process is bare minimum. During blocking period,
processes can do their normal computations, send messages and can process selective messages. The number of
processes that take checkpoints is minimized to avoid awakening of MHs in doze mode of operation and thrashing
of MHs with checkpointing activity. It also saves limited battery life of MHs and low bandwidth of wireless
channels which reduce the loss of checkpointing effort when any process fails to take its checkpoint in

 Cao-Singhal
[8]

Cao-
Singhal [4]

Koo-Toeg
Algorithm [6]

Elnozahy
et al [5]

Proposed
Algorithm

Avg. bloc king
Time

2Tst 0 h1*Tch 0 h2*Tch

Average No. of
checkpoints

Nmin Nmin+
Nmut

Nmin N Nmin

Average
Message
Overhead

3Cbroadcast+
2Cwl+2Nms

s*Cst+3Nm

h* Cwl

2*Nmin*
Cpp + Cbroadcast
+ Nucr*Cpp

3*Nmin*Cpp*
Ndep

2* Cbroadcast

+ N *Cpp
2Cwl+3 +
Cbroadcast
+4*Nmin*Cwl
+ 2*Nmss*Cst

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

coordination with others try to minimize the synchronization messages during checkpointing. In the proposed
scheme, no synchronization messages are sent in order to enter the second or third phase of the algorithm.

REFERENCES
[1] Chandy, K. M., and L. Lamport,” Distributed Snapshots Determining Global State of Distributed

System,”ACM Transaction on Computer System.Vol. 3, no. 1, Feb. 1985, pp. 63-75.
[2] Lamport,L.“Time, Clocks, and the Ordering of Events in Distributed System,”Communications of the

ACM, vol. 21, no.7,July 1978, pp. 558-565. Proceedings of the 9th International Conference on
Distributed Computing System, 1989.

[3] Le Lann, G., “ Distributed System-Towards a Formal Approach,” Information Processing Letter, North-
Holland, Vol. 77, 1977, pp. 155-160.

[4] Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing
systems,” IEEE Transaction On Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-172, February
2001.

[5] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The Performance of Consistent Checkpointing,”
Proceedings of the 11th Symposium on ReliableDistributed Systems, pp. 39-47, October 1992.

[6] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems,” IEEE Trans. on
Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

[7] Lalit Kumar Awasthi, Kumar p. 2007 A Synchoronous Checkpointing Protocol For Mobile Distributed
Systems :Probabilistic Approach. Int J. Information and Computer Security, Vol.1, No.3 .pp 298-314

[8] G. Cao and M. Singhal. “On impossibility of Min-Process and Non-Blocking Checkpointing and An
Efficient Checkpointing algorithm for mobile computing Systems”. OSU Technical Report #OSU-
CISRC-9/97-TR44, 1997.

[9] Silva L, Silva J 1992 Global checkpointing for distributed programs. Proc. IEEE 11th Symp. On Reliable
Distributed Syst. pp 155-162.

[10] P. Kumar, L. Kumar and R.K. Chauhan, “A Non-Intrusive minimum process synchronous checkpointing
protocol for mobile distributed systems”, in proceeding of IEEE ICPWC-2005,2005

[11] Parveen Kumar, “A Low‐Cost Hybrid Coordinated Checkpointing Protocol for mobile distributed
systems”, Mobile Information Systems. pp 13‐32, Vol. 4, No. 1, 2007.

[12] Cao G. and Singhal M., “On coordinated checkpointing in Distributed Systems”, IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no.12, pp. 1213‐1225, Dec 1998.

[13] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal checkpointing for mobile distributed systems”
Proceedings. 19th IEEE International Conference on Data Engineering, pp 686 – 88, 2003.

[14] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non‐intrusive Hybrid Synchronous Checkpointing Protocol
for Mobile Systems”, IETE Journal of Research, Vol. 52 No. 2&3, 2006.

[15] Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum‐process Coordinated Checkpointing Protocol
for Mobile Computing Systems”, International Journal of Foundations of Computer science,Vol 19, No. 4,
pp 1015‐1038 (2008).

[16] Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed Nonblocking Checkpointing”, Journal of
Interconnection Networks, Vol. 1 No. 5, pp. 47‐78, March 2004.

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605

