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Abstract: In this paper, a three phase minimum-process coordinated checkpointing algorithm for non-
deterministic mobile distributed systems is proposed, where no useless checkpoints are taken. An effort has been 
made to minimize the blocking of processes and synchronization message overhead and to capture the partial 
transitive dependencies during the normal execution by piggybacking dependency vectors onto computation 
messages.    Frequent aborts of checkpointing  procedure may happen in mobile systems due to exhausted battery, 
non-voluntary disconnections of MHs, or poor wireless connectivity.    Therefore, in the proposed scheme, all 
concerned MHs will take ad-hoc checkpoint only and these checkpoint is stored on the memory of MH only. In this 
case, if some process fails to take checkpoint in the first phase, then MHs need to abort their ad-hoc checkpoints 
only. In this way, we try to minimize the loss of checkpointing effort when any process fails to take its checkpoint 
in coordination with others. 
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I. INTRODUCTION 

Most of the existing coordinated checkpointing algorithms [1-3],[6],[9] rely on the two-phase protocol and save 
two kinds of checkpoints on the stable storage: tentative and permanent. In the first phase, the initiator process 
takes a tentative checkpoint and requests all or selective processes to take their tentative checkpoints. If all 
processes are asked to take their checkpoints, it is called all-process coordinated checkpointing [1],[5],[9]. 
Alternatively, if selective communicating processes are required to take checkpoints, it is called minimum-process 
checkpointing [6].  Each process informs the initiator whether it succeeded in taking a tentative checkpoint. After 
the initiator has received positive acknowledgments from all relevant processes, the algorithm enters the second 
phase. Alternatively, if a process fails to take its tentative checkpoint in the first phase, the initiator process 
requests all or concerned processes to abort their tentative checkpoint.  

If the initiator learns that all concerned processes have successfully taken their tentative checkpoints, the 
algorithm enters in the second phase and the initiator asks the relevant processes to make their tentative 
checkpoints permanent. In order to record a consistent global checkpoint, when a process takes a checkpoint, it 
asks (by sending checkpoint requests to) all relevant processes to take checkpoints. Therefore, coordinated 
checkpointing suffers from high overhead associated with the checkpointing process [7], [11], [14-15]. Much of 
the previous work [4],[7-8],[11-12],[14-15] in coordinated checkpointing has focused on minimizing the number 
of synchronization messages and the number of checkpoints during the checkpointing process. However, some 
algorithms (called blocking algorithm) force all relevant processes in the system to block their computations 
during the checkpointing process [7-8], [11-15]. Checkpointing includes the time to trace the dependency tree and 
to save the states of processes on the stable storage, which may be long. Moreover, in mobile computing systems, 
due to the mobility of MHs, a message may be routed several times before reaching its destination. Therefore, 
blocking algorithms may dramatically reduce the performance of these systems [5]. Recently, non-blocking 
algorithms [5],[ 9] have received considerable attention. In these algorithms, processes need not block during the 
checkpointing by using a checkpointing sequence number to identify orphan messages. Moreover, these 
algorithms [5], [9] require all processes in the system to take checkpoints during checkpointing, even though many 
of them may not be necessary.  

In this paper, we propose an efficient checkpointing algorithm for mobile computing systems that forces only a 
minimum number of processes to take checkpoints. An effort has been made to minimize the blocking of 
processes and synchronization message overhead. We capture the partial transitive dependencies during the 
normal execution by piggybacking dependency vectors onto computation messages.  The Z-dependencies are well 
taken care of in this protocol. In order to reduce the message overhead, we also avoid collecting dependency 
vectors of all processes to find the minimum set as in [8], [10-11]. We also try to minimize the loss of 
checkpointing effort when any process fails to take its checkpoint.  
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II SYSTEM MODEL 
A distributed system consists of a fixed number of processes, P1 , P2 , P3 , …. Pn , which communicate only 
through messages. Processes cooperate to execute a distributed application and interact with the outside world by 
receiving and sending input and output messages, respectively. Fig. 1 shows a system consisting of three 
processes and interactions with the outside world. 

 

 
Fig. 1 Model of Distributed System 

Rollback-recovery protocols generally make assumptions about the reliability of the inter-process communication. 
Some protocols assume that the communication subsystem delivers messages reliably, in first-in-first-out (FIFO) 
order, while other protocols assume that the communication subsystem can lose, duplicate, or reorder messages. 
The choice between these two assumptions usually affects the complexity of checkpointing and failure recovery. 
A generic correctness condition for rollback-recovery can be defined as follows : “a system recovers correctly if 
its internal state is consistent with the observable behavior of the system before the failure.” Rollback-recovery 
protocols therefore must maintain information about the internal interactions among processes and also the 
external interactions with the outside world. 

In distributed systems, all processes save their local states at certain instants of time. This saved state is known as 
a local checkpoint. A local checkpoint is a snapshot of the state of the process at a given instance and the event of 
recording the state of a process is called local checkpointing. The contents of a checkpoint depend upon the 
application context and the checkpointing method being used. Depending upon the checkpointing method used, a 
process may keep several local checkpoints or just a single checkpoint at any time. By periodically invoking the 
checkpointing process, one can save the status of a program at regular intervals. If there is a failure one may 
restart computation from the last checkpoint thereby avoiding repeating computations from the beginning. The 
process of resuming computation by rolling back to a saved state is called rollback recovery. 

Proposed system model consists of a number of MHs which communicate through mobility support stations 
(MSSs). Each MSS is a fixed network host which provides wireless communication support for a fixed 
geographical area, called a cell. MSSs are linked together over the wired data networks. The distributed system 
consisting of n processes, running on MHs or MSSs. The MHs can communicate with the MSS through wireless 
channels. We assume that wireless channels and logical channels are all FIFO order. If a MH moves to the cell of 
another base station, a wireless channel to the old MSS is disconnected and a wireless channel in the new MSS is 
allocated. However, its checkpoint related information is still with the old MSS. A MH may voluntarily 
disconnect from mobile computing networks. The MH does not send and receive any message when it is in a 
disconnected state. We also assume a closed system that consists of nodes, links, and disks. Input is stored on disk 
before operation begins. Output is stored on disk when the job ends. 

There is no common clock, shared memory or central coordinator. Message passing is the only mode of 
communication between any pair of processes. The messages originated from a source Mh, are received by the 
local Mobile support stations and then forwarded to the destination MH.  Any process can initiate checkpointing. 
It is assumed that processes may be failed during processing but there is no communication link failure.  Messages 
are exchanged with finite but arbitrary delays. In our algorithm, we consider that the processes which are running 
in the distributed mobile systems are non-deterministic. 
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IV. BASIC IDEA 

All Communications to and from MH pass through its local MSS. The MSS maintains the dependency 
information of the MHs which are in its cell. The dependency information is kept in Boolean vector Ri for process 
Pi. The vector has n bits for n processes. When Ri[j] is set to 1, it represents Pi depends upon Pj. For every Pi, Ri is 
initialized to 0 except Ri[i], which is initialized to l. When a process Pi running on an MH, say MHp, receives a 
message from a process Pj, MHp's local MSS should set Ri[j] to 1.If Pj has taken its permanent checkpoint after 
sending m,  Ri[j] is not updated. 

Suppose there are processes Pi and Pj running on MHs, MHi and MHj with dependency vectors Ri and Rj. The 
dependency vectors of MHs, MHi and MHj are maintained by their local MSSs, MSSi and MSSj. Process Pi 
running on MHi sends message m to process Pj running on MHj. The message is first sent to MSSi (local MSS of 
MHi). MSSi maintains the dependency vector Ri of MHi. MSSi appends Ri with message m and sends it to MSSj 

(local MSS of MHj). MSSj maintains the dependency vector Rj of MHj. MSSj replaces Rj with bitwise logical OR 
of dependency vectors Ri and Rj and sends m to Pj. 

 

 
 
 

In Fig. 2, there are five processes P1, P2, P3, P4, P5 with dependency vectors R1, R2, R3, R4, R5 initialized to 00001, 
00010, 00100, 01000, and 10000 respectively. Initially, every process depends upon itself. Now process P1 sends 
m to P2. P1 appends R1 with m. P2 replaces R2 with the bitwise logical OR of R1(00001)  and R2(00010), which 
comes out to be   (00011). Now P2 sends m2 to P3 and appends R2 (00011) with m2. Before receiving m2, the value 
of R3 at P3 was 00100. After receiving m2, P3 replaces R3 with the bitwise logical OR of R2 (00011) and R3 
(00100) and  R3 becomes (00111). Now P4 sends m3 along with R4 (01000) to P5. After receiving m3, R5 becomes 
(11000).In this case, if P3 starts checkpointing at t1, it will compute the tentative minimum set equivalent to 
R3(00111),  which comes  out to be {P1, P2, P3}. In this way, partial transitive dependencies are captured during 
normal computations.   

In coordinated checkpointing, if a single process fails to take its checkpoint; all the checkpointing effort goes 
waste, because, each process has to abort its tentative checkpoint [4, 8, 10, 11, 13, 15]. Furthermore, in order to 
take the tentative checkpoint, an MH needs to transfer large checkpoint data to its local MSS over wireless 
channels. Hence, the loss of checkpointing effort may be exceedingly high due to frequent aborts of checkpointing 
algorithms especially in mobile systems.  In mobile distributed systems, there remain certain issues like: abrupt 
disconnection, exhausted battery power, or failure in wireless bandwidth. So there remains a good probability that 
some MH may fail to take its checkpoint in coordination with others. Therefore, we propose that, in the first 
phase, all processes in the minimum set,  take ad hoc checkpoint only. Ad hoc checkpoint is stored on the memory 
of MH only. If some process fails to take its checkpoint in the first phase, then other MHs need to abort their ad 
hoc checkpoints only. The effort of taking an ad hoc checkpoint is negligible as compared to the tentative one. In 
other protocols [4],[8],[10], [11], [13],[15],  all concerned processes need to abort their tentative checkpoints in 
this situation. Hence the loss of checkpointing effort in case of an abort of the checkpointing procedure is 
dramatically low in the proposed scheme as compared to other coordinated checkpointing schemes for mobile 
distributed systems.    

In this second phase, a process converts its ad hoc checkpoint into tentative one. By using this scheme, we try to 
minimize the loss of checkpointing effort in case of abort of checkpointing algorithm in the first phase.  A non-
blocking checkpointing algorithm does not require any process to suspend its underlying computation. When 
processes do not suspend their computation, it is possible for a process to receive a computation message from 
another process, which is already running in a new checkpointing interval. If this situation is not properly dealt 
with, it may result in an inconsistency. During the checkpointing procedure, a process Pi may receive m from Pj 
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Fig. 2 Maintenance of Dependency Vectors 
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such that Pj has taken its checkpoint for the current initiation whereas Pi has not. Suppose, Pi processes m, and it 
receives checkpoint request later on, and then it takes its checkpoint. In that case, m will become orphan in the 
recorded global state. We propose that only those messages, which can become orphan, should be buffered at the 
sender’s end.  When a process takes its ad hoc checkpoint, it is not allowed to send any message till it receives the 
tentative checkpoint request. However, in this duration, the process is allowed to perform its normal computations 
and receive the messages. When a process receives the tentative checkpoint request, it is confirmed that every 
concerned process has taken its ad hoc checkpoint. Hence, a message generated for sending by a process after 
getting tentative checkpoint request cannot become orphan. Hence, a process can send the buffered messages after 
getting the tentative checkpoint request from the initiator. 
 

V. PHASES OF PROPOSED ALGORITHM 
A. First phase of the algorithm 

When a process, say Pi, running on an MH, say MHi, initiates a checkpointing, it sends a checkpoint initiation 
request to its local MSS, which will be the proxy MSS (if the initiator runs on an MSS, then the MSS is the proxy 
MSS). The proxy MSS maintains the dependency vector of Pi say Ri. On the basis of Ri, the set of dependent 
processes of Pi is formed, say Sminset. The proxy MSS broadcasts ckpt (Sminset) to all MSSs. When an MSS receive 
ckpt (Sminset) message, it checks, if any processes in Sminset are in its cell. If so, the MSS sends ad hoc checkpoint 
request message to them. Any process receiving a ad hoc checkpoint request takes a ad hoc checkpoint and sends 
a response to its local MSS. After an MSS received all response messages from the processes to which it sent ad 
hoc checkpoint request messages, it sends a response to the proxy MSS. It should be noted that in the first phase, 
all processes take the ad hoc checkpoints. For a process running on a static host, ad hoc checkpoint is equivalent to 
tentative checkpoint. But, for an MH, ad hoc checkpoint is different from tentative checkpoint. In order to take a 
tentative checkpoint, an MH has to record its local state and has to transfer it to its local MSS. But, the ad hoc 
checkpoint is stored on the local disk of the MH. It should be noted that the effort of taking a ad hoc checkpoint is 
very small as compared to the tentative one. For a disconnected MH that is a member of minimum set, the MSS 
that has its disconnected checkpoint, considers its disconnected checkpoint as the required come.  
B. Second Phase of the Algorithm 

After the proxy MSS has received the response from every MSS, the algorithm enters the second phase. If the 
proxy MSS learns that all relevant processes have taken their ad hoc checkpoints successfully, it asks them to 
convert their ad hoc checkpoints into tentative ones and also sends the exact minimum set along with this request. 
Alternatively, if initiator MSS comes to know that some process has failed to take its checkpoint in the first phase, 
it issues abort request to all MSS. In this way the MHs need to abort only the ad hoc checkpoints, and not the 
tentative ones. In this way we try to reduce the loss of checkpointing effort in case of abort of checkpointing 
algorithm in first phase. 

When an MSS receives the tentative checkpoint request, it asks all the process in the minimum set, which are also 
running in itself, to convert their ad hoc checkpoints into tentative ones. When an MSS learns that all relevant 
process in its cell have taken their tentative checkpoints successfully, it sends response to proxy MSS. If any MH 
fails to transfer its checkpoint data to its local MSS, then the failure response is sent to the proxy MSS; which in 
turn, issues the abort message. 

C. Third Phase of the Algorithm 

Finally, when the proxy MSS learns that all processes in the minimum set have taken their tentative checkpoints 
successfully, it issues commit request to all MSSs. When a process in the minimum set gets the commit request, it 
converts its tentative checkpoint into permanent one and discards its earlier permanent checkpoint, if any. 

 
VI. MASSAGE HANDLING DURING CHECKPOINTING 

When a process takes its ad hoc checkpoint, it does not send any massage till it receives the tentative checkpoint 
request. This time duration of a process is called its uncertainty period.  Suppose, Pi sends m to Pj after taking its 
ad hoc checkpoint and Pj has not taken its ad hoc checkpoint at the time of receiving m. In this case, if Pj takes its 
ad hoc checkpoint after processing m, then m will become orphan. Therefore, we do not allow Pi to send any 
massage unless and until every process in the minimum set have taken its ad hoc checkpoint in the first phase. Pi 
can send massages when it receives the tentative checkpoint request; because, at this moment every concerned 
process has taken its ad hoc checkpoint and m cannot become orphan. The massages to be sent are buffered at 
senders end. In this duration, a process is allowed to continue its normal computations and receive massages.  

Suppose, Pj gets the ad hoc checkpoint request at MSSp. Now, we find any process Pk such that Pk does not 
belong to Sminset and Pk belongs to Rj[]. In this case, Pk is also included in the minimum set; and Pj sends ad hoc 
checkpoint request to Pk. It should be noted that the Sminset, computed on the basis of dependency vector of 
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initiator process is only a subset of the minimum set. Due to zigzag   dependencies, initiator process may be 
transitively dependent upon some more processes which are  not included in the Sminset computed initially.  

The proposed Algorithm can be better understood by the example shown in Fig. 3.  There are six processes (P0 to 
P5) denoted by straight lines. Each process is assumed to have initial permanent checkpoints with csn equal to 
“0”. Cix denotes the xth  checkpoints of Pi. Initial dependency vectors of P0, P1, P2, P3, P4, P5 are [000001], 
[000010] [000100], [001000], [010000], and [100000], respectively. P0 sends m2 to P1 along with its dependency 
vector [000001]. When P1 receives m2, it computes its dependency vector by taking bitwise logical OR of 
dependency vectors of P0 and P1, which comes out to be [000011]. Similarly, P2 updates its dependency vector 
on receiving m3 and it comes out to be [000111]. At time t1, P2 initiates checkpointing algorithm with its 
dependency vector is [000111].  At time t1, P2 finds that it is transitively dependent upon P0 and P1. Therefore, 
P2 computes the tentative minimum set [Sminset= {P0, P1,  P2}]. P2 sends the ad hoc checkpoint request to  P1 
and  P0 and takes its own ad hoc checkpoint C21. For an MH the ad hoc checkpoint is stored on the disk of MH. It 
should be noted that Sminset is only a subset of the minimum set. When P1 takes its ad hoc checkpoint C11, it 
finds that it is dependent upon P3 due to m4, but P3 is not a member of Sminset; therefore, P1 sends ad hoc 
checkpoint request to P3. Consequently, P3 takes its ad hoc checkpoint C31.    

After taking its ad hoc checkpoint C21, P2 generates m8 for P3. As P2 has already taken its ad hoc checkpoint for 
the current initiation and it has not received the tentative checkpoint request from the initiator; therefore P2 buffers 
m8 on its local disk. We define this duration as the uncertainty period of a process during which a process is not 
allowed to send any massage. The massages generated for sending are buffered at the local disk of the sender’s 
process. P2 can sends m8 only after getting tentative checkpoint request or abort massages from the initiator 
process. Similarly, after taking its ad hoc checkpoint P0 buffers m10 for its uncertainty period. It should be noted 
that P1 receives m10 only after taking its ad hoc checkpoint. Similarly, P3 receives m8 only after taking its ad hoc 
checkpoint C31.A process is allowed to receive all the massages during its uncertainty period; for example, P3 
receives m11. A process is also allowed to perform its normal computations during its uncertainty period. 

 

 
 

At time t2, P2 receives responses to ad hoc checkpoints requests from all process in the minimum set (not shown 
in the Fig 3) and finds that they have taken their ad hoc checkpoints successfully, therefore, P2 issues tentative 
checkpoint request to all processes. On getting tentative checkpoint request, processess in the minimum set [ P0, 
P1, P2, P3 ] convert their ad hoc checkpoints into tentative ones and send the response to initiator process P2; 
these process also send the massages, buffered at their local disks, to the destination processes For example, P0 
sends m10 to P1 after getting tentative checkpoint request [not shown in the figure]. Similarly, P2 sends m8 to P3 
after getting tentative checkpoint request. At time t3, P2 receives responses from the process in minimum set [not 
shown in the figure] and finds that they have taken their tentative checkpoints successfully, therefore, P2 issues 
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commit request to all process. A process in the minimum set converts its tentative checkpoint into permanent 
checkpoint and discards it old permanent checkpoint if any.   

 
 

VII. CORRECTNESS PROOF BY CONTRADICTION 
 

We can show that global state, collected by the proposed protocol in  will be consistent. We can prove the result 
by contradiction. Suppose there is some orphan message in the recorded global state. We explore different 
possibilities with the help of Fig 3 Suppose, P0 sends m10 after taking its ad hoc checkpoint and P1 receives m10 
before taking its ad hoc checkpoint. This situation is not possible, because, after taking its ad hoc checkpoint P0 
comes into its uncertainty period and it cannot send any message unless and until it receives the tentative 
checkpoint request. P2 can issue the tentative checkpoint request only after getting confirmed that every concerned 
process (including P1) has taken its ad hoc check point. Hence P1 cannot receive m10 before taking its ad hoc 
checkpoint C11. Suppose, P5 sends m13 to P3 after C50 and P3 gets m13 before C31 (not show in the Fig. 2). In this 
case, when P3 takes its ad hoc checkpoint C31, it will find that P5 does not belong to Sminset and P3 is dependent 
upon P5; therefore, P3 will send ad hoc checkpoint request to P5 and send (m13) will also be included in the global 
state. 

 
VIII. PERFORMANCE ANALYSIS 

We use following notations to compare proposed algorithm with other algorithms: 
Nmss:    number of MSSs. 
Nmh:    number of MHs.   
Cpp:     cost of sending a message from one process to another     
Cst:      cost of sending a message between any two MSSs. 
Cwl:     cost of sending a message from an MH to its local MSS (or vice versa). 
Cbroadcast: cost of broadcasting a message over static network. 
Csearch:  cost incurred to locate an MH and forward a message to its current    local MSS, from a    source      
              MSS.  
Tst:        average message delay in static network. 
Twl:       average message delay in the wireless network. 
Tch:       average delay to save a checkpoint on the stable storage. It also includes the time to    transfer the 
checkpoint from an MH to its local MSS. 
N:         total number of processes 
Nmin:     number of minimum processes required to take checkpoints.       
Nmut:     number of useless mutable checkpoints [4].    
Tsearch:   average delay incurred to locate an MH and forward a message to its current local MSS. 
Nucr:       average number of useless checkpoint requests in [4]. 
Ndep:      average number of processes on which a process depends. 
h1    :      height of the checkpointing tree in Koo-Toueg algorithm [6]. 
h2    :      height of the checkpointing tree in the proposed algorithm. 

A. Message Overhead of the Proposed Algorithm 
a) Message overhead in the first phase: 

i) Initiator process sends ad hoc checkpoint request to the local MSS and  (say MSSin) and gets 
response from the MSSin: 2 Cwl 

ii) MSS in broadcasts ad hoc checkpoint request over the static network: Cbroadcast  
iii) We suppose that all the process are running on MHs.  
iv) All the process in the minimum set get the ad hoc checkpoint request from the local MSS and sends 

response to the local MSS: 2*Nmin*Cwl 
v) Every MSS sends response to MSSin: Nmss*Cst 

b) Message overhead in the second phase 
i) MSSin broadcasts tentative checkpoint request over static network:Cbroadcast  
ii) Every process in the minimum set receives tentative checkpoint request, and sends response to these 

requests to local MSS: 2*Nmin*Cwl  
iii) Every MSS sends response to MSSin: Nmss*Cst 

c) Message overhead in the third phase 
i) MSSin  broadcasts commit request  over static network: Cbroadcast  
ii) Total Average message overhead:  2Cwl+3 Cbroadcast +4*Nmin*Cwl + 2*Nmss*Cst 

 

Proposed algorithm is a three phase algorithm; therefore it suffers from extra message overhead of Cbroadcast 
+4*Nmin*Cwl. By doing so, we are able to reduce the loss of checkpointing effort in case of abort of the 
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checkpointing procedure in the first phase. In other algorithms [4, 6, 8], in case of abort in the first phase, all 
concerned processes are forced to abort their tentative checkpoint whereas in the proposed scheme, all relevant 
processes abort their ad hoc checkpoints only. The effort of taking an ad hoc checkpoint is negligible as compared 
to tentative one in the mobile distributed system [4]. Frequent abort of checkpointing algorithms, due to exhausted 
battery power, abrupt disconnections etc., may significantly increase the checkpointing overhead in two-phase 
algorithms [4],[8],[10], [11], [13],[15]. We try to minimize the same by designing the three phase algorithm.   

In proposed algorithm, only minimum number of processes is required to take their checkpoints. The blocking 
time of the Koo-Toueg [6] protocol is highest, followed by Cao-Singhal [4] algorithm. We claim that the blocking 
time in the proposed scheme will be significantly smaller as compared to the KT Algorithm [6]. Because, in 
algorithm [6], transitive dependencies are collected by direct dependencies. The checkpoint initiator process, say 
Pin, sends the checkpoint request to any process Pi if Pin  is causally dependent upon Pi. Similarly, Pi  sends the 
checkpoint request to any process Pj if Pi  is causally dependent upon Pj. In this way, a checkpointing tree is 
formed. In the proposed algorithm, transitive dependencies are captured during normal execution as described in 
Section 3.3. Some zigzag dependencies may not be captured in the proposed scheme during normal execution and 
they may form low order checkpointing tree in some typical situations. But, in general, the checkpointing tree 
formed in the proposed scheme will be negligibly small as compared to KT algorithm [6] and hence the blocking 
time of processes will be small in the proposed scheme as compared to KT algorithm [6]. Furthermore, in the 
proposed scheme, a process is blocked when it takes its ad hoc checkpoint and it waits for the other concerned 
process to take their ad hoc checkpoints to come out of blocking state.    In KT algorithm [6], a process is blocked 
when it takes its tentative  checkpoint and it waits for the other concerned process to take their tentative  
checkpoints to come out of blocking state. In mobile distributed systems, the time to take an ad-hoc  checkpoint 
may be negligibly small as compared to tentative checkpoint.  

 
 

Table 1  A Comparison of System Performance 
 

 
 
Hence, in the proposed scheme, the blocking period of  a process will be significantly small as compared to the 
KT algorithm [6]. Proposed blocking period is larger than CS algorithm [8], but it suffers from extra message 
overhead of collecting dependency vectors from all processes and moreover, it forces all the processes to block for 
a short duration. In proposed scheme, a process is blocked only if it is a member of the minimum set. Furthermore, 
a process is allowed to perform its normal computations and receive messages during its blocking period.  
 In the algorithms proposed in  [4],[10],[13], no blocking of processes takes place, but some useless checkpoints 
are taken, which are discarded on commit.  In Elnozahy et al [5] algorithm, all processes take checkpoints. In the 
protocols [6], [8], and in the proposed one, only minimum numbers of processes record their checkpoints. In 
algorithm [4], concurrent executions of the algorithm are allowed, but it may lead to inconsistencies in doing so 
[16]. We avoid the concurrent executions  of the proposed algorithm..      
 

IX. CONCLUSION 
Proposed minimum-process synchronous checkpointing algorithm for mobile system try to minimize the blocking 
of processes during checkpointing. The blocking time of a process is bare minimum. During blocking period, 
processes can do their normal computations, send messages and can process selective messages.  The number of 
processes that take checkpoints is minimized to avoid awakening of MHs in doze mode of operation and thrashing 
of MHs with checkpointing activity. It also saves limited battery life of MHs and low bandwidth of wireless 
channels which reduce the loss of checkpointing effort when any process fails to take its checkpoint in 
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coordination with others try to minimize the synchronization messages during checkpointing. In the proposed 
scheme, no synchronization messages are sent in order to enter the second or third phase of the algorithm. 
 

REFERENCES 
[1]   Chandy, K. M., and L. Lamport,” Distributed Snapshots Determining Global State of  Distributed 

System,”ACM Transaction on Computer System.Vol. 3, no. 1, Feb. 1985,   pp. 63-75. 
[2]   Lamport,L.“Time, Clocks, and the Ordering of Events in Distributed System,”Communications of the 

ACM, vol. 21, no.7,July 1978, pp. 558-565. Proceedings of the 9th International Conference on 
Distributed  Computing System, 1989. 

[3]   Le Lann, G., “ Distributed System-Towards a Formal Approach,” Information Processing Letter, North- 
Holland, Vol. 77, 1977, pp. 155-160. 

[4]   Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing 
systems,” IEEE Transaction On Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-172, February 
2001.  

[5]   Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The Performance of Consistent Checkpointing,” 
Proceedings of the 11th Symposium on ReliableDistributed Systems, pp. 39-47, October 1992. 

[6]   Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems,” IEEE Trans. on 
Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987.  

[7]   Lalit Kumar Awasthi, Kumar p. 2007 A Synchoronous Checkpointing Protocol For Mobile Distributed 
Systems :Probabilistic Approach. Int J. Information and Computer Security, Vol.1, No.3 .pp 298-314 

[8]   G. Cao and M. Singhal. “On impossibility of Min-Process and Non-Blocking Checkpointing and  An 
Efficient Checkpointing algorithm for mobile computing Systems”. OSU Technical Report #OSU-
CISRC-9/97-TR44, 1997. 

[9]   Silva L, Silva J 1992 Global checkpointing for distributed programs. Proc. IEEE 11th Symp.  On Reliable 
Distributed Syst. pp 155-162. 

[10]   P. Kumar, L. Kumar and R.K. Chauhan, “A Non-Intrusive minimum process synchronous checkpointing 
protocol for mobile distributed systems”, in proceeding of IEEE ICPWC-2005,2005 

[11]   Parveen  Kumar,  “A  Low‐Cost  Hybrid  Coordinated  Checkpointing  Protocol  for  mobile  distributed 
systems”, Mobile Information Systems. pp 13‐32, Vol. 4, No. 1, 2007.     

[12]   Cao G. and Singhal M.,  “On  coordinated  checkpointing  in Distributed Systems”,  IEEE Transactions on 
Parallel and Distributed Systems, vol. 9, no.12, pp. 1213‐1225, Dec 1998. 

[13]   L. Kumar, M. Misra, R.C.  Joshi, “Low overhead optimal checkpointing  for mobile distributed  systems” 
Proceedings. 19th IEEE International Conference on Data Engineering, pp 686 – 88, 2003.  

[14]   Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non‐intrusive Hybrid Synchronous Checkpointing Protocol 
for Mobile Systems”, IETE Journal of Research, Vol. 52 No. 2&3, 2006.  

[15]   Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum‐process Coordinated Checkpointing Protocol 
for Mobile Computing Systems”, International Journal of Foundations of Computer science,Vol 19, No. 4, 
pp 1015‐1038 (2008). 

[16]   Ni,  W.,  S.  Vrbsky  and  S.  Ray,  “Pitfalls  in  Distributed  Nonblocking  Checkpointing”,  Journal  of 
Interconnection Networks, Vol. 1 No. 5,  pp. 47‐78, March 2004. 

 

International Journal of Latest Transactions in Engineering and Science (IJLTES)

Vol. 1 Issue 2 June 2013 ISSN: 2321-0605




